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6 CHAPTER 1. RELEASE NOTES
1.1 Release notes, SDT 7.6

Major modifications for current release

e New title, general reorganisation and major improvement of the documentation
e New format of graphics and figures with improved style sheets
e New section [4] on general sensors and actuators definition

e New section on methods for meshing plates with piezoelectric patches (including automated
methods)

e New section [6] on model reduction and I/O state-space models with emphasis on

— State-space models with imposed displacement /acceleration/voltage
— State-space models construction from Craig-Bampton reduced models (also for imposed

voltage)

e General reorganisation and addition of numerous scripts to illustrate all concepts presented in
the new sections, in particular related to the construction of state-space models (total of 28
tutorial scripts).

e Direct links to scripts for given steps of tutorial scripts in the documentation.

e All tutorial scripts are integrated in the d_piezo(’tuto’) interactive tool.

A total of 28 tutorial scripts are included in this documentation. The simplest way to run the
tutorials is to open the gui environment:

% Open the gui interface
d_piezo(’tuto’);

Each tutorial can be expanded using the '+’ on the left. The green arrows allow to run each step of
the script and access that part of the script in the Matlab editor. The white arrows allows to only
see the script.
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[=-PzPatchExt

~5tep 1 Build mesh - Define electrodes
~5tep 2 Define material properties
~5tep 3 Compute static response
~5tep 4 Visualize deformed shape

~5tep 51 check constitutive law

EAIE2IE2|R3| Rl E2
[2][8][2][2][2][Z]

~5tep & Check capacitance values

--Tutu:uPzPatchShear: Piezoelectric shear patch - statics help

--Tutu:uPzDiskImpedance: Piezoelectric disk impedance help
--Tutu:uF'zBeamCu:uI : 30 beam with collocated sensors and... help
--Tutu:uF'zBeamNCu:uI : 30 beam with non collocated sens... help
"TutDPzEEEr‘ﬂSurF'lfl:ll : 30 beam with Surface and Volum... help
--Tutu:uPzBeamUImp : 30 beam with imposed displaceme... help
--Tutu:uPzBeamDisp‘-fEIAcc : 30 beamn with displ,vel and a... help
--Tutu:uPzPIateaipzt : Cantilever plate with 4 piezo patches help
--Tutu:uPzAccShaker: Piezoelectric shaker and accelero help
--Tutu:uPzMeshingBasics : Plate with 4 pzt patchezmanua... help
--Tutu:uPzMeshingAutu:u : Plate with 4 pzt patchesiauto me... help

Figure 1.1: gui interface to run tutorials

d_piezo(’Scriptname’) is used to run a specific tutorial script in command line.
d_piezo(’Scriptname-sn’) allows to specify the step, where n is the step number.

d_piezo(’tutopzpatchext-s1’)

will run the first step of the demo script in section [3.5.1].

1.2 Old release notes

Major modifications for SDT 7.1 are
e Inclusion of new materials (Ferroperm, Sonox, MFCs) in the database.
e Introduction of tutorials in d_piezo(’Tuto’).
e New script for Macro Fiber Composites in d_piezo(’TutoPlate mfc’).

e Theory and new script for point load actuator using a shaped triangular piezoelectric trans-
ducer in d_piezo(’TutoPlate triang’).
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e Theory and new script for vibration damping using RL shunt and piezoelectric patches in
d_piezo(’TutoPz shunt’).

e Theory and new script for piezoelectric homogenization on RVEs of piezocomposites (applica-
tion to MFCs) in d_piezo(’TutoPz P1 homo’) and d_piezo(’TutoPz P2 homo’) .

e Color visualization of stress and strain added to IDE patch script d_piezo (’ TutoPatch num IDE’).

Major modifications for SDT 6.6 were

Writing of the present manual

Significant generalization of p_piezo(’Electrode’) commands.

Inclusion of elastic properties in the database.

Introduction of electrical and charge viewing illustrated in this manual.

Specialized meshing capabilities and examples are grouped in d_piezo(’Mesh’).

1.3 External links

References to external documents. In SDT use sdtweb(’ref’) to open the page.
e fe2ss FEM model to state-space transformation base/fe2ss.
e scell shape at DOF base/scelll
e general general definition of sensors base/scell#generall

e resultant resultant force sensor base/sstruct#resultant.

2 properties of composite shell base/p_shell#2


https://www.sdtools.com/helpcur/base/fe2ss.html
https://www.sdtools.com/helpcur/base/scell.html
https://www.sdtools.com/helpcur/base/scell.html#general
https://www.sdtools.com/helpcur/base/sstruct.html#resultant
https://www.sdtools.com/helpcur/base/p_shell.html#2
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Polarization consists in the separation of positive and negative electric charges at different ends of
the dielectric material on the application of an external electric field (Figure [2.1]).

Spontaneous polarization is the phenomenon by which polarization appears without the application
of an external electric field. Spontaneous polarization has been observed in certain crystals in which
the centers of positive and negative charges do not coincide. Spontaneous polarization can occur
more easily in perovskite crystal structures.

The level and direction of the polarization is described by the electric displacement vector D:

D=c¢E+P (2.1)

where P is the permanent polarization which is retained even in the absence of an external electric
field, and eF represents the polarization induced by an applied electric field. ¢ is the dielectric per-
mittivity. If no spontaneous polarization exists in the material, the process through which permanent
polarization is induced in a material is known as poling.

- Negative
charge

Positive
charge

+ 4+ + + + + +
1

Electric field

Figure 2.1: Polarization: separation of positive and negative electric charges on the two sides of a
dielectric material

Ferroelectric materials have permanent polarization that can be altered by the application of an
external electric field, which corresponds to poling of the material. As an example, perovskite
structures are ferroelectric below the Curie temperature. In the ferroelectric phase, polarization can
therefore be induced by the application of a (large) electric field.

Piezoelectricity was discovered by Pierre and Jacques Curie in 1880. The direct piezoelectric effect
is the property of a material to display electric charge on its surface under the application of an
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external mechanical stress (i.e. to change its polarization). (Figure ) The converse piezoelectric
effect is the production of a mechanical strain due to a change in polarization (Figure )

HTFF f‘” oharge

Strain generated

Applied electric

generated field
e = ¥
aensnsk
a) Direct piezoelectric b) Converse piezoelectric
effect effect

Figure 2.2: Direct and converse piezoelectric effect

Piezoelectricity occurs naturally in non ferroelectric single crystals such as quartz, but the effect
is not very strong, although it is very stable. The direct effect is due to a distortion of the crys-
tal lattice caused by the applied mechanical stress resulting in the appearance of electrical dipoles.
Conversely, an electric field applied to the crystal causes a distortion of the lattice resulting in an
induced mechanical strain. In other materials, piezoelectricity can be induced through poling. This
can be achieved in ferroelectric crystals, ceramics or polymers.

A piezoelectric ceramic is produced by pressing ferroelectric material grains (typically a few microm-
eters in diameter) together. During fabrication, the ceramic powder is heated (sintering process)
above Curie temperature. As it cools down, the perovskite ceramic undergoes phase transformation
from the paraelectric state to the ferroelectric state, resulting in the formation of randomly oriented
ferroelectric domains. These domains are arranged in grains, containing either 90° or 180° domains
(Figure ) This random orientation leads to zero (or negligible) net polarization and piezoelectric

coefficients (Figure [2.3p).
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a) b)

180° domains

Distribution of
poling directions
Grain

boundaries .
~—1 > 90° domains

== Domain walls

1 Polarization

Figure 2.3: Piezoelectric ceramic : a) ferroelectric grains and domains, b) distribution of poling
directions

The application of a sufficiently high electric field to the ceramic causes the domains to reorient in
the direction of the applied electric field. Note however that the mobility of the domains is not such
that all domains are perfectly aligned in the poling direction, but the total net polarization increases
with the magnitude of the electric field (Figure . After removal of the applied electric field, the
ferroelectric domains do not return in their initial orientation and a permanent polarization remains
in the direction of the applied electric field (the poling direction). In this state, the application
of a moderate electric field results in domain motions which are responsible for a deformation of
the ceramic and are the source of the piezoelectric effect. The poling direction is therefore a very
important material property of piezoelectric materials and needs to be known for a proper modeling.

Non-polarized High electric Polarized
ceramic (E=0) field E ceramic (E=0)

Figure 2.4: Orientation of the ferroelectric domains in non-polarized and polarized ceramics



2.1. PIEZOELECTRIC CONSTITUTIVE LAWS IN 3D 13

Typical examples of simple perovskites are Barium titanate (BaTi03) and lead titanate (PbTi0O3).
The most common perovskite alloy is lead zirconate titanate (PZT- PbZr TiO3). Nowadays, the
most common ceramic used in piezoelectric structures for structural dynamics applications (active
control, shape control, structural health monitoring) is PZT, which will be used extensively in the
documented examples.

In certain polymers, piezoelectricity can be obtained by orienting the molecular dipoles within the
polymer chain. Similarly to the ferroelectric domains in ceramics, in the natural state, the molecular
dipole moments usually cancel each other resulting in an almost zero macroscopic dipole. Poling of
the polymer is usually performed by stretching the polymer and applying a very high electric field,
which causes the molecular dipoles to orient with the electric field, and remain orientated in this
preferential direction after removal of the electric field (permanent polarization). This gives rise to
piezoelectricity in the polymer. The technology of piezoelectric polymers has been largely dominated
by ferroelectric polymers from the polyvinylidene fluoride (PVDF) family, discovered in 1969. The
main advantage is the good flexibility, but their piezoelectric coefficients are much lower compared
to ferroelectric ceramics.

2.1 Piezoelectric constitutive laws in 3D

Up to a certain level of electric field and strain, piezoelectric materials behave linearly. This tutorial
is restricted to linear piezoelectricity, but the interested reader can refer to [I] for more details on
non-linear piezoelectricity.

Assuming a linear piezoelectric material and adopting the notations of the IEEE Standards on
piezoelectricity [2], the 3D constitutive equations are given by:

( T1 i ClEl C% C% 0 0 0 0 0 —E€31 T ( Sl
T2 ClE2 CQEQ CQE:; 0 0 0 0 0 —€32 SQ
T3 ClE;g CQEB CgEé 0 0 0 0 0 —€s33 Sg
T4 0 0 0 Cﬂ 0 0 0 —€24 0 54
T5 = 0 0 0 0 CE% 0 —€15 0 0 S5 (22)
Ts 0 0 0 0 0 & o 0 0 Ss
D1 0 0 0 0 €15 0 8’;31 0 0 E1
Do 0 0 0 eq4 0 0 0 €5, 0 E,
D3 ) | €31 €32 €33 0 0 0 0 Egg 1 \ E3

where F; and D; are the components of the electric field vector and the electric displacement vector,
and T; and S; are the components of stress and strain vectors, defined according to:
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( T1 ( T11 ) Sl Sll
T2 T22 52 522
T3 EY S3 S33
= = 2.3
Ty To3 Sy 2 Sa3 (2:3)
T5 T13 S5 2 513
L T6 Ty ) Se ) L 2512
Matrix notations are usually adopted leading to:
T
(T} = [CF] {8} ~ [l {E} (24)

— S
{D} = [el{S} + [°] {E}
A widely used alternative and equivalent representation consists in writing the constitutive equations
in the following form:

PRI
where the following relationships hold:

[s"] =[] (2.6)

le] = [d] [¢"] (2.7)

%] = [e"] ~ [ [e]" (2.8)

There are also two additional possibilities to write these constitutive equations, which are less com-
monly used but are given here for completeness:

{s} = [sP]{T} + [g)" {D} (2.9)
{E} = —[gl{T} + [87] {D}
(T} = [P] {8} — [n]" {D} (2.10)

{E} = —[1]{S} + [8°] {D}

The following relationships hold:

[P] [s"] = Is (2.11)
[8°] [€°] = [67] T[sT] =1
e
S = |c —_ g
1851 = [87] — [g]" [] (2.12)
[d] = [¢"] [g]
lg] = [h] [SD}



2.1. PIEZOELECTRIC CONSTITUTIVE LAWS IN 3D 15

[h] = [°] [¢] (2.13)

The piezoelectric coefficients are contained in the matrix [d] whose structure is specific to each type
of piezoelectric material. The typical structure for a z-polarized PZT material is

0 0 0 0 dis O
[d] = 0 0 0 dyg 0 O (2.14)
d31 ds2 dzgz 0 0 O

Regular PZT ceramics are isotropic in the plane perpendicular to the poling direction (d3; = dso,
di5 = da4), but piezoelectric composites can have orthotropic properties [3]. PVDF material does
not exhibit piezoelectricity in the shear mode, so that the typical structure is:

0 0 0O 0 0 O
=0 0 0 000 (2.15)
d31 dz2 dzgz 0 0 O

PVDF can be either isotropic or orthotropic in the plane perpendicular to the poling direction,
depending on the fabrication process (uni-axial or bi-axial). Table gives typical piezoelectric
coefficients for PZT ceramics and PVDF films. Note that these properties can vary significantly
from the figures in the table, as there are many different material types. The permittivity is usually
given with its relative value which is the ratio of the permittivity by the permittivity of vacuum
(g0 = 8.854 10712 F/m).

Material properties ‘ PZT ‘ PVDF (bi-axial)
Piezoelectric properties
ds3 (pC/N) 440 -25
d31 (pC/N) -185 3
ds2 (pC/N) -185 3
Relative permittivity
Er | 1800 | 12
Young’s Modulus
Y1(GPa) 54 3
Y2 (GPA) 54 3
Y3(GPA) 48 10
p (kg/m?) 7600 1800

Table 2.1: Typical piezoelectric properties of PZT ceramics and PVDF films
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2.2 Piezoelectric constitutive laws in plates

When thin piezoelectric transducers are used with plate structures, the common plane stress hy-
pothesis (73 = 0) must be used together with an hypothesis for the electric field. When the ceramic
is poled through the thickness, the hypothesis commonly adopted is that the electric field is zero in
the plane of the transducer (E; = E3 = 0). The constitutive equations then reduce to:

T [ B 0 0 0 —e ] [ S
Ty oy 0 0 0 —eiy So
. L _ | 0 o0 & o0 0 0 S,
s (| 0 0 0 & o 0 Ss (2.16)
Ts O 0 0 0 c& o Se
Ds €5 el 0 0 0 55 | | Es

where the superscript * denotes the properties under the ”piezoelectric plates” hypothesis (T3 =
Ey = Ey = 0). These properties are related to the 3D properties with the following relationships:

B2
N c
i = [Cﬁ - 12) ] (2.17)
C33
E E
B = [c{g - 013523] (2.18)
C33
E\27
5 = [CQEz - (622) (2.19)
C33 |
B -
* C13 €33
€31 = [6’31 - 13E (2.20)
C33
5 -
* Co3 €33
€3 = [632 - 2 (2.21)
C33
o-
Sk s , (es3)
533 - |:533‘|‘ E (222)
C33 |

The distinction is very important, as it is often not well understood and many errors can arise from
the confusion between plate and 3D properties of piezoelectric materials. Note however that the
d;j, 35 and €7 coefficients are equal for plate and 3D constitutive equations. It is therefore prefer-
able to handle the material properties of piezoelectric materials in the form of .

Similarly to the 3D equations, the constitutive equations can be written in a matrix form, separating
the mechanical and the electrical parts:

{T} = ["]{S} — [ {E)}
{D} = [e']{S} + [¢¥] {E} (2.23)
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Using (12.7) in equations ((2.20),(2.21)),(2.22))), one can further show that

[e"] = [d*] [¢™*] (2.24)
and for the permittivity:
e =33 — [d"][e]" (2.25)
with
[d]=[ds dsz 0 0 O] (2.26)
and
[e]=1[e4 e 0 0 0] (2.27)

The values of e3;, e3, and egg‘ can therefore be computed knowing the elastic matrix [CE*] and the
values of d3; and d3s and 533

2.3 Database of piezoelectric materials

m_piezo Dbval|includes a number of material characteristics for piezoelectric materials. The prop-
erties are obtained from the datasheet of the material, but as we will illustrate, the data is not
always sufficient to calculate all the material properties needed for the computations. Most of the
information in the datasheet is generally related to the constitutive equations written in the form of
(2.5). For PZT, PVDF, or piezoelectric composites based on PZT and PVDF, the general form of
these matrices is:

Sl i 8{51 SlEQ SlEé 0 0 0 0 0 d31 ] T1
So st sE s 0 0 0 0 0 ds2 T,
53 81E3 853 Sgg 0 0 0 0 0 d33 T3
Sy 0 0 0 s& 0 0 0 dy O T,
55 = 0 0 0 0 S5E5 0 d15 0 0 T5 (2 . 28)
Se 0O 0 0 0 0 sZ& 0 0 0 Ts
D1 0 0 0 0 d15 0 6{1 0 0 E1
D2 0 0 0 d24 0 0 0 552 0 E2
\ D3 L d31 d32 d33 0 0 0 0 €§3 i E3
E

For an orthotropic material, the compliance matrix [s
neering constant F;,v;; and G;; as follows:

] can be written as a function of the engi-

B 1 —Vyz —Vex T

o E, o 0 0 0
—Vaq 1 —Vz
=y s 00 0
—Vxz —Vyz i
[sE]: E, E, E, ? 0 0 (2.29)
0 0 0 - 0 0
o 0 0 0 gz 0
1
0 0 0 0 0 & |
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where z is aligned with the poling direction 3, and x,y with directions 1,2 respectively. Note that
the matrix is symmetric so that:

Vyg — Vzy Vg Vgz Vzy Vyz (2 30)

E, E, E. E, E. E,
A bulk piezoelectric ceramic exhibits transverse isotropic properties: the properties of the material

are the same in the plane perpendicular to the poling direction. In this case, the compliance matrix
reduces to:

1 -V —Vz
n B s 00 0
—v 1 —Vs
= o5 wr 00 0
ez ez L9 0 0
E7 _ E, E, E, 231
i 0 0 0 & 0 0 (2:31)
0o 0 0 0 g 0
0 0 o0 o o 2w
and due to the symmetry we have:
Vap Vpz
=2 B 2.32
B B, (2.32)

where the subscript p refers to the in-plane properties. The matrix of piezoelectric coefficients is:

0 0 0 0 dis O
=] 0 0 0 ds 0 0 (2.33)
ds; ds1 dsz O 0 0

and the matrix of dielectric permittivities:

el 0 0
f]=] 0 & o (2.34)
0 0 &k

In order to use such a piezoelectric material in a 3D model, it is therefore necessary to have access

to the 5 elastic constants E,,E,,vp,v., and G, 3 piezoelectric constants d3i,ds3, and di5 and two
dielectric constants 7;,eZ;. Unfortunately, such constants are generally not given in that form, but
can be calculated from the material properties found in the datasheet.

It is important to introduce the electromechanical coupling factors which are generally given in the
datasheet and are a function of the elastic, piezoelectric and dielectric properties of the material.
They measure the effectiveness of the conversion of mechanical energy into electrical energy (and
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vice-versa). There is one coupling factor for each piezoelectric mode:

d2
k2, = %3
31 8%2511
2 _ _%3
k33 = I SE (2'35)
33733
- ;l15
15 €11555

In addition, coupling factors k,, for radial modes of thin discs, and k; for thickness modes of arbitrary
shaped thin plates are also commonly given in datasheet. k, is related to k3; through:

2k?2
2 31
k,

= s
1+ 3
S11

(2.36)

k: is always lower than kg3 but there does not seem to be a simple explicit expression of k; as a
function of the material properties. The fact that k; is lower than k33 means that electrical energy
conversion in the dss-mode is less effective for a thin plate than for a rod. The definition of the
coupling factors k33 and k15 also allows to write alternative expressions:

k33 =1-2
Wi s (2.37)
k2, =1-3=1-21
15 3?5 5?1

We illustrate the use of these different relationships to form the full set of mechanical, piezoelectric
and dielectric properties for the material SONOX P502 from Ceramtec (http://www.ceramtec.com/)
which is a soft piezoceramic. The properties found in the datasheet on matweb.com are given in
Table 2.2 .
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Material property ‘ value ‘ unit
Piezoelectric properties
ds3 440 10~ 2m/V
ds1 -185 10~ 12m/V
dis 560 107 2m/V
€33 16.7 C/m? = As/m?
933 26.9 1073 Vm/N
Permittivity
€2, 1850 & F/m
€35 875 €9 F/m
el 1950 &g F/m
et 1260 &g F/m
Elastic properties
sh 18.5 10712 m?/N
sk 20.7 10712 m?/N
b 15.7 1010 N/m?
ch 6.5 1010 N/m?
Coupling coefficients
kss 0.72
kis 0.74
ka1 0.33
k, 0.62
ki 0.48
Density
P 7740 | kg/m3

Table 2.2: Properties of SONOX P502 from the datasheet found on https://www.matweb.com (2013)

E, and E, are computed directly from the definitions of s}, and si;:

1

E,= — = 54.05GPa (2.38)

311

1
E.= 5 =48.31GPa (2.39)

833

Knowing the value of s, ds1, 5%13 and kp, s, can be computed:

d? _
sty = —s8 + 2k2le = —7.628810"*m*/N
p-33
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allowing to compute the value of v:

vp = —Epsty = 0.4124

and the value of G,

E.
Gp = ——2— =19.17GPa
2(1+vp)
From the value (:5D5 and kq5, we compute
E 1 —12,_2
————— =3410""“"m*/N

S55 =
C5D5(1 - ki%)

from which the the value of G, is computed:

1
G = — =29.41GPa

855

The value of v, cannot be calculated from the datasheet information. We therefore assume that,
as for most PZT ceramics:

Vap = 0.39

The value of v, is calculated as:

E
Vpz = E—pyzp =0.44
z

The complete set of values is summarized in Table These are the values used in
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Material property ‘ value ‘ unit
Piezoelectric properties

ds3 440 | 107%m/V

ds 2185 | 1072m/V

dis 560 | 1072m/V
Permittivity

€iq 1850 & F/m

el 1950 €9 F/m
Mechanical properties

E, 54.05 GPa

E, 48.31 GPa

G.p 29.41 GPa

Gp 19.17 GPa

Vp 0.4124

Vap 0.39

Upz 0.44

P 7740 kg/m3

Table 2.3: Properties of SONOX P502 to be used in 3D finite element models

Note that there is some redundancy in the data from the datasheet, which allows to check for
consistency. The two following coupling factors are computed from the data available and checked

against the tabulated values.
d3,
€33511

dis
k3z = = 0.7556
5?333]33

The values are close to the values in Table In addition, the value of g33 is given by:

d
g33 = —= = 0.0269Vm/N

€33

and corresponds exactly to the value tabulated. The value of e33 can be computed using Equa-

tion (2.7, leading to:

e33 = 19.06C/m?

where there is a difference of about 15% with the tabulated value of es3 = 16.7C'/m?. Note however
that this last value was found on matweb.com and is not given in the more recent datasheet on
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Ceramtec website (in 2023).

Using (2.37) to compute k15 with the values from the datasheet, one gets:

which shows the non-consistency of the value of €7, in the datasheet. In fact, when computed using

(2.8), one gets:

7] = 908¢

This illustrates the fact that it is difficult to obtain the full set of parameters needed for computation
for piezoelectric materials, as there are often some inconsistencies amongst the data available from
the manufacturers. What we believe is a ”best compromise” was used in the material properties
available in SDT.

From the input values in (Table [2.3), it is possible to compute the mechanical, piezo-
electric and permittivity matrices used in the four different forms of the constitutive equations

,,, using the relationships -) and -.

The command p_piezo(’TabDD’ ,model) gives access to all the matrices based in the input values
in This will be illustrated in section section [3.5.1] .

As the mechanical properties of PZT are not strongly orthotropic, a simplification can be done
by considering that the material is isotropic (for the mechanical and dielectric properties, not the
piezoelectric properties). An isotropic version of SONOX P502 is included in under the
name of SONOX_P502_iso whose properties are given in Table
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Material property ‘ value ‘ unit
Piezoelectric properties

ds3 440 107 2m/V

ds 2185 | 1072m/V

dis 560 | 1072m/V
Permittivity

el 18509 |  F/m
Mechanical properties

E 54 GPa

v 0.41

P 7740 kg/m?

Table 2.4: Simplified material properties for SONOX P502 considering mechanical isotropy

The second example is the PIC 255 PZT, also a soft piezoceramic, from PI ceramics. The properties
found in the datasheet in the year 2013 are given in Table (https://www.piceramic.com). Note
that C2 was not given, therefore we estimated it from the value of PIC' 155 given in the same
datasheet, which is just slightly stiffer.
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Material property ‘ value ‘ unit
Piezoelectric properties
ds3 400 10~ 2m/V
ds -180 10~ 12m/V
dis 550 107 2m/V
g31 -11.3 1073 | Vm/N
933 25 1073 Vm/N
Permittivity
€3, 1750 €9 F/m
ef 1650 &g F/m
Elastic properties
sH 16.1 10712 [ m?/N
s 20.7 1072 |  m?2/N
b 11 10% N/m?
Coupling coefficients
k33 0.69
kis 0.66
ka1 0.35
ky 0.62
kt 0.47
Density
p \ 7800 \ kg/m?

25

Table 2.5: Properties of PIC 255 from the datasheet (2013)

E, and FE. are computed directly from the definitions of sH and 53Eg:

1

51

—

1
E, = — = 48.31 GPa

3 _
st = —sB + 2& = 5221072 m?/N
p-33

allowing to compute the value of v:

vp = —Epsty = 0.3242
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and the value of G,

E
Gp=——"2— =23.53GPa
21+ 1)

The value of 3?5 can be computed as:

d?

E 15 —11 2

Ske = =4.7510 m*/N
% 5?11‘7%5 /

which leads to:

1
Gzp == E = 21.03GPa
555

Again, the value of v,, cannot be calculated from the datasheet information. We cannot assume a
value of 0.39 as previously, as it would lead to a non-physical value of v,,. As v, is in the range of
0.32 and v, is typically slightly lower, we assume that :

Vzp = 0.30

The value of v, is calculated as:

Eyp
Upz = — Vzp = 0.39
z

The complete set of values is summarized in Table[2.6] These are the values used in Note
that there is some redundancy in the data from the datasheet, which allows to check for consistency.
The two following coupling factors are computed from the data available and checked against the

tabulated values.

d2
kst = || ok = 0.36

33511

d2
k33 =y | % = 0.70

33533
The values are very close to the values in Table In addition, the value of g33 and g3; are given
by:
g31 = % = —11.6103 Vm/N
3
933 = % = 258107 Vm/N

33

QU m
co o

and are also very close to the values tabulated.
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Material property ‘ value ‘ unit
Piezoelectric properties

ds3 400 | 107%m/V

ds 2180 | 1072m/V

dis 550 | 1072m/V
Permittivity

€iq 1750 €9 F/m

el 1650 &g F/m
Mechanical properties

E, 62.11 GPa

E, 48.31 GPa

G.p 21.03 GPa

Gp 23.53 GPa

Vp 0.3242

Vap 0.30

Upz 0.39

P 7800 kg/m?

Table 2.6: Properties of PIC 255 to be used in 3D finite element models from datasheet in 2013

As shown in the derivations above, the datasheet for PZT material typically do not contain the full
information to derive all the coefficients needed for computations, and some hypothesis need to be
made. In addition, it is usual to have a variation of 10 % or more on these properties from batch
to batch, and the datasheet are not updated for each batch. Note also that the properties are given
at 20 °C and are temperature dependant. The variations with temperature are rarely given in the
datasheet. This may also account for inaccuracies in the computations.

The more recent datasheet found on PI Ceramics website (2023) leads to slightly different properties,
and includes the value of ng, which gives a more precise value for F,. The new datasheet information
is given in Table[2.7]and the resultingn_piezo| input parameters in Table[2.8] The updated properties
are included in the PIC255b material inn_piezo| It is advised to use this updated material property,
as the main difference is for the Young’s modulus in the direction of poling. This parameter has an
important impact on the longitudinal natural frequency of disks and rods.
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Material property ‘ value ‘ unit
Piezoelectric properties
ds3 400 10~ 2m/Vv
ds -180 107 12m/V
dis 550 107 12m/V
gs1 -11.8 1073 | Vm/N
933 25 1073 Vm/N
Permittivity
€24 1800 & F/m
e 1750 €9 F/m
Elastic properties
sh 16 1012 m?/N
sk 19 10712 m?/N
b 15.4 1010 N/m?
Coupling coefficients
k33 0.69
kis 0.65
ka1 0.35
kp 0.62
ki 0.47
Density
p \ 7800 \ kg/m?

Table 2.7: Properties of PIC' 255b from the datasheet (2023)
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Material property ‘ value ‘ unit
Piezoelectric properties

ds3 400 | 107%m/V

ds 2180 | 1072m/V

dis 550 | 1072m/V
Permittivity

€iq 1800 & F/m

el 1750 €9 F/m
Mechanical properties

E, 62.5 GPa

E, 52.63 GPa

G.p 21.64 GPa

Gp 23.39 GPa

Vp 0.3389

Vap 0.30

Upz 0.3562

P 7800 kg/m3

Table 2.8: Properties of PIC' 255b to be used in 3D finite element models from datasheet in 2023

In much the same way, the material properties of PIC 181 which is a hard piezoceramic from the
same manufacturer have been updated from the PIC181 to the PIC181b properties in

Table[2.9 summarizes the different material properties available in SDT, and the year of the datasheet
where the original data was found.
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Manufacturer type year SDT name
Ceramtec Sonox P502 2023 SONOX_P502
Ceramtec Sonox P502 - simplified | 2023 | SONOX_P502_iso

PI Ceramics PIC181 2013 PIC181

PI Ceramics PIC181 2023 PIC181b

PI Ceramics PIC255 2013 PIC255

PI Ceramics PIC255 2023 PIC255b
Ferroperm Pz21 2018 | FerropermPz21
Ferroperm Pz23 2018 | FerropermPz23
Ferroperm Pz24 2018 | FerropermPz24
Ferroperm Pz26 2018 | FerropermPz26
Ferroperm Pz27 2018 | FerropermPz27
Ferroperm Pz28 2018 | FerropermPz28
Ferroperm Pz29 2018 | FerropermPz29
Ferroperm Pz34 2018 | FerropermPz34
Ferroperm Pz46 2018 | FerropermPz46

Noliac NCE51 2012 Noliac.NCE51

Table 2.9: Piezoelectric materials available in SDT: manufacturer references and year, and SDT
name

2.4 Illustration of piezoelectricity in statics: patch example

2.4.1 Patch in extensional mode

Consider a thin piezoelectric patch of dimensions b x h x w. The poling direction, noted 3 in the IEEE
Standards on piezoelectricity is perpendicular to the plane of the piezoelectric patch. Continuous
electrodes are present on the top and bottom surfaces (z = 0, z = h) so that the electric potential
is constant on these surfaces and denoted by Vi and V5 respectively. We assume that a difference
of potential is applied between the electrodes, resulting in an electric field parallel to the poling
direction and equal to (Figure

v =(Ve-W) _ Vi-W

By =—4; h h
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Continuous electrodes

h z=3
L
w x=1
tp
- s -
P : Poling direction a- V=V, 5
$ E=-(V,-V)))h ‘
q+ V=V, 1

Figure 2.5: A piezoelectric patch poled through the thickness with continuous electrodes on the top
and bottom surfaces

We adopt the following expression for the constitutive equations:

{8y = [s"]{T} + [4)" {E}
{D} = [d{T} + [¢T] {E}

The patch is assumed to be unconstrained so that it can expand freely, leading to {T'} = 0, so that
we have :

(2.40)

¢ Sl ( d31 V1;V2 3
Sa d32—“fﬁ“f
S d 1—V2
{5} = Si =[d" {E}={ 0" (2.41)
S5 0
\ Sﬁ ) \ 0 J

We have taken into account the fact that the electric field is in the z-direction only. This shows
that when applying a difference of potential across the thickness (in the poling direction), strains
will be induced in the directions 1,2, and 3. The magnitude of these different strains is proportional
to the ds; coefficients of the piezoelectric material. For a ceramic PZT material, d3; = d3o < 0, and
dss3 > 0 and is generally between 2 and 3 times larger in magnitude than ds; and dss.

The second equation can be used in order to assess the amount of charge that is accumulated on
both electrodes. We have :
D,
{D}=X D, 3 =["]{E} (2.42)
Ds
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The only non-zero component of the D vector is D3 given by :

-V
D3:5531h 2

(2.43)

The charge accumulated on the electrode is given by :

— - [ (D} {n}as
S
where {n} is the normal to the electrode. For the top electrode, this leads to :

533 A
h

q=- (Vi = V%)

where A is the surface of the electrode. For the bottom electrode

533 A
h

q= (Vi —Va)

When (V; — V3) is positive, the electric field is in the direction of poling and the charge on the top
electrode is negative, while the charge accumulated on the bottom electrode is positive (Figure .
Note that this equation corresponds to the equation linking the charge to the difference of potential
for a capacitor (¢ = CAV'). The value of the capacitance is therefore :

533A

T _
¢ h

which corresponds to the capacitance of the free piezoelectric patch ({7} = 0).

If we now consider the case where the piezoelectric patch is fully mechanically constrained ({S} =0
), we have:

(T} = — [0 {E} = — [ {F} -
{D} = [°] {E} '
leading to :
(71 ((—egy A2
13 —ezp L v
P B G e
Ty 0
7 0 (2.45)
Ts ) 0




2.4. ILLUSTRATION OF PIEZOELECTRICITY IN STATICS: PATCH EXAMPLE 33

The fact that the patch is not allowed to expand is responsible for the generation of internal stresses
which are proportionnal to the es; coefficients. In this case, the capacitance is given by:

S
cS — eg34
h
which corresponds to the capacitance of the constrained piezoelectric patch ({S} = 0). This

illustrates the fact that the capacitance of a piezoelectric patch depends on the mechanical boundary
conditions. This is not the case for other types of dielectric materials in which the piezoelectric effect
is not present, and for which therefore the capacitance is independent on the mechanical strain or
stress.

2.4.2 Patch in shear mode

We now consider the same patch but where the polarization is in the plane of the actuator, as
represented in Figure [2.6] As in the previous example, continuous electrodes are present on the top
and bottom surfaces (z = 0, z = h) so that the electric potential is constant on these surfaces and
denoted by Vi and V5 respectively. We assume that a difference of potential is applied between the
electrodes, resulting in an electric field perpendicular to the poling direction and equal to

AV (W) ViV

B, =
2 dz h h

The electric field is now applied in direction 2, so that it will activate the shear dsy = di5 mode of
the piezoelectric material.

Continuous electrodes

b
P : Poling direction 9- V=V, s
P+ % E=-(V,-V)h |
gt V=V, 3 y

Figure 2.6: A piezoelectric patch poled in the plane with continuous electrodes on the top and
bottom surfaces
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The patch is assumed to be unconstrained so that it can expand freely, leading to {T'} = 0, so that
we have :

(5 ) 0 3\
S5 0
) Sz a7 B 0
(5)=1 9 -lT =1 (2.46)
S5 0
\ Se \ 0 )

We have taken into account the fact that the electric field is in the z-direction only, corresponding

to direction 2 in the local axis of the piezoelectric material (direction 3 is the poling direction by
convention). This shows that when the patch is poled in the plane, when applying a difference of
potential across the thickness, a shear strain in the local 23 plane will be induced. The magnitude
of this strain is proportional to the dsy coefficient of the piezoelectric material.

The second equation can be used in order to assess the amount of charge that is accumulated on
both electrodes. We have :

D,
{D}=X D, ;= ["]{E} (2.47)
Ds
The only non-zero component of the D vector is Do given by :
Vi =V
Dy =cl, 122 (2.48)

h

The charge accumulated on the electrode is given by :

q-—/S{D}{n}ds

where {n} is the normal to the electrode. For the top electrode, this leads to :

T
€50 A
¢=—2=(Vi-Vo)
where A is the surface of the electrode. For the bottom electrode
ey A

QIT(W—%)

When (V; —V3) is positive, the charge on the top electrode is negative, while the charge accumulated
on the bottom electrode is positive (Figure . The value of the capacitance is therefore:

T
T_522A
¢ = h
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which corresponds to the capacitance of the free piezoelectric patch ({7} = 0) and is close to the ca-
pacitance when the poling is out of the plane of the transducer because e, ~ 53T3 (in reality, there is

typically a difference of 5% between these two values so that the capacitance will be slightly different).

If we now consider the case where the piezoelectric patch is fully mechanically constrained ({S} =0
), we have:

T
(T} = 1[7% _{JEJ}S] }Ee] {E} (2.49)
leading to :
T 0 )
Ty 0
T 0
{T}= = 1—Va
;}; _6248/ - (2.50)
T 0

_ S Vi—Vs
Dy = 5,7

In this case, the capacitance is given by:

522A

S _
¢ h

which corresponds to the capacitance of the constrained piezoelectric patch activated in shear
({S} = 0). Note that this capacitance is clearly different from C* when the poling is out of the
plane, because the value of 552 is very different from the value of 5§3, due to the different values of
stiffness and piezoelectric coefficients in shear and extensional mode.
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Hamilton’s principle is used to derive the dynamic variational principle [1]:

+{SY ()" (0B} + {EYT [9] (0B} + {f}" {ou} — {pe}” {5¢}] v -~
T T B
v [ 0" - [ (0 0} d2) a0

where V' is the volume of the piezoelectric structure, p is the mass density, {u} is the displacement
field and {du} its variation, {¢} is the electric pontential and {d¢} its variation. {f} is the volumic
force, {pe} the volumic charge density, {¢} the vector of applied surface forces on 1 and {o} the
charge density applied on €)o. The variational principle is the starting point for all discrete finite
element formulations. 3D and shell approximations are detailed below.

3.1 Piezoelectric solid finite elements

For 3D solids, the discretized strain and electric fields are linked to the discretized displacement
vector (u,v,w) and electric potential ¢ by:

(€ [ N,z 0 0 0
€y 0 Ny 0 0
€, 0 0 N,z 0
g Vyz 0 N,z N,y 0 Z
{ 5 }: Yoz ¢ =1| N,z 0 N,z 0 w (3.2)
Yoy N,y N,z O 0
E, 0 0 0 —N,z ¢
E, 0 0 0 —N,y
\ E. . 0 0 0 —N,z
where N, x u is a short notation for
ON;
- ar

and N;(x,y, z) are the finite element shape functions. Plugging (3.2) in (3.1]) leads to the discrete
set of equations which are written in the matrix form

qu 0 CIm“ech qu KqV Qmech _ Fmech
I L S 6
where {@mecn } contains the mechanical degrees of freedom (3 per node related to u,v,w), and {V'}

contains the electrical degrees of freedom (1 per node, the electric potential ¢). {Fyecn} is the vector
of applied external mechanical forces, and {Q} is the vector of applied external charges.
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3.2 Piezoelectric shell finite elements

Shell strain is defined by the membrane, curvature and transverse shear as well as the electric field
components. In the piezoelectric multi-layer shell elements implemented in SDT, it is assumed that
in each piezoelectric layer ¢ = 1...n, the electric field takes the form E = (0 0 E.). E.; is assumed
to be constant over the thickness h; of the layer and is therefore given by E,; = — Ahqsl where Ag; is
the difference of potential between the electrodes at the top and bottom of the piezolelectric layer 1.

It is also assumed that the piezoelectric principal axes are parallel to the structural orthotropy axes.

AZ
hp

e piezo

fﬂ
hf ———— - mid-plane

Figure 3.1: Multi-layer shell piezoelectric element

The discretized strain and electric fields of a piezoelectric shell take the form

Caz [N,z 0 0 0 0 0 0 ]

;yy 0 Ny 0 0 0 0 0 ( w
Cay N,y N,z 0 0 0 0 0 v
P O 0 0 0 —-Naz 0 0 w
Py O 0 0 Ny 0 0 0 ru
260y 0= 0 0 0 Nz -Ny 0 0 - (3-4)
Tz 0 0 Nz 0 N 0 0 Ady
Tyz 0 0 Ny —-N 0 0 0
Bt 0 0 0 0 0 -0 0 Aoy,
cee O _L

—E.n - fen

/

There are thus n additional degrees of freedom Ag¢;, n being the number of piezoelectric layers in
the laminate shell. The constitutive laws are obtained by using the ”piezoelectric plates” hypothesis
(2.16)) and the definitions of the generalized forces N, M, @ and strains ¢, x,y for shells:
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N [ A B o GI' .. GL 7( € )

M B D 0 zmGY .. 2,,GY K

Q 0 0 F 0 0 ¥

Dzl - Gl Zm1G1 0 —€1S 0 _Ezl (3.5)
D., | Gn zZmnGpn 0 0 N 1\ —E. )

D,; is the electric displacement in piezoelectric layer , z,,; is the distance between the midplane of
the shell and the midplane of piezoelectric layer i (Figure [3.1)), G; is given by

Gi={ et e 0}[R); (3.6)

where * refers to the piezoelectric properties under the piezoelectric plate assumption as detailed
in section and [R;]; are rotation matrices associated to the angle 6 of the principal axes 1,2 of
the piezoelectric layer given by:

cos? 6 sin 6 sin 6 cos 0
[Rs] = sin? 6 cos? 0 —sinf cos (3.7)
—2sinfcosh 2sinfcosh cos?h —sin? 6

Plugging (3.4) into (3.1]) leads again to:

qu 0 Qm:ech + qu KqV dmech _ Frecn (3 8)

0 0 Vv Ky, Kyy V Q '
where {¢necn} contains the mechanical degrees of freedom (5 per node corresponding to the dis-
placements u, v, w and rotations rz,ry), and {V} contains the electrical degrees of freedom. The
electrical DOF's are defined at the element level, and there are as many as there are active layers

in the laminate. Note that the electrical degree of freedom is the difference of the electric potential
between the top and bottom electrodes Adg.

3.3 Full order model

Piezoelectric models are described using both mechanical g, and electric potential DOF V. As
detailed in sections section [3.1] and section [3.2], one obtains models of the form

|: Z‘]Q(S) ZqV :| { dmech } _ { Frecn } (3 9)
Zvq Zvv 14 Q

for both piezoelectric solids and shells, where Zg,(s) is the dynamic (mechanical) stiffness expressed

as a function of the Laplace variable s.
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For piezoelectric shell elements, electric DOF's correspond to the difference of potential on the elec-
trodes of one layer, while the corresponding load is the charge (). In SDT, the electric DOFs for
shells are unique for a single shell property and are thus giving an implicit definition of electrodes
(see [p_piezo Shelll). Note that a common error is to fix all DOF when seeking to fix mechanical
DOFs, calls of the form ’x==0 -DOF 1:6° avoid this error.

For volume elements, each volume node is associated with an electric potential DOF and one defines
multiple point constraints to enforce equal potential on nodes linked by a single electrode and sets
one of the electrodes to zero potential (see [p_piezo ElectrodelMPC| and for example section
for a tutorial on how to set these constraints). During assembly the constraints are eliminated and
the resulting model has electrical DOF's that correspond to potential, or differences of potential (if
the other electrode’s potential is set to 0) and loads to charge.

Short circuit (SC), charge sensors configurations correspond to cases where the potential is
forced to zero (the electrical circuit is shorted). In , this corresponds to a case where the po-
tential (electrical DOF) is fixed and the charge corresponds to the resulting force associated with
this boundary condition.

A voltage actuator corresponds to the same problem with V' = V7, (built in SDT using fe _load

(’DofSet’) entries). The closed circuit charge is associated with the constraint on the enforced
voltage and can be computed by extracting the second row of (3.9))

{Q} = [ZqC] {Qmech} + [ZVV} {Vln} (310)

@)

>

o
1

<

- Sens=0
PZT Q(t) () PZT
| & &

Figure 3.2: Short circuit: voltage actuator, charge sensor

V=Q/C

[p_piezo ElectrodeSens(| provides utilities to build the charge sensors, including sensor combina-
tions.
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SC is the only possibly boundary condition to impose in a FEM model where voltage is the unknown.
The alternative is to leave the potential free which corresponds to not specifying any boundary con-
dition.

Open circuit (OC), voltage sensor, configurations correspond to cases where the charge remains
zero and a potential is created on the electrodes due to mechanical deformations.

A piezoelectric actuator driven using a charge source also would correspond to this configu-
ration (but the usual is voltage driving).

The voltage DOFs {V'} associated to open-circuits are left free in (3.9)). Since electrostatics are nor-
mally considered, Zy v is actually frequency independent and the voltage DOF's could be condensed
exactly

{(V}=1Zvv] " (Qin — [Zvq] {ameen}) (3.11)

This configuration is to be used for a voltage sensor, for example when the piezoelectric transducer
is attached directly to the data acquisition card or a voltage amplifier (with very large impedance
for sensing). In both cases the impedance is very large leading to a configuration close to an open
circuit (OC, infinite impedance). Another example of OC boundary conditions is the use of current
(charge) amplifiers for actuation, which is rarely used in practice but possible.

Act=q(t)
PZT V(t) CT) Sens=0

Figure 3.3: Open circuit (voltage sensor, charge actuator)

Since voltage is an explicit DOF, it can be observed using fe case(’SensDof’) sensor entries. Sim-
ilarly charge is dual to the voltage, so a charge input would be a simple point load on the active DOF
associated to an electrode. Note that specifying a charge distribution does not make sense since you
cannot both enforce the equipotential condition and specify a charge distribution that results from
this constraint.

It is possible to observe charge in an OC condition, but this is of little interest since this charge will
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remain at 0.

In summary, when computing modes under voltage actuation, the proper boundary condition is a
SC, while for current (charge) actuation, it would be OC. For sensing, a voltage sensor corresponds
to OC, while a charge sensor requires SC.

3.4 Using the Electrode stack entry

SDT 6.6 underwent significant revisions to get rid of solver strategies that were specific to piezo ap-
plications. The info,Electrodes of earlier releases is thus no longer necessary. To avoid disruption
of user procedures, you can still use the old format with a .ver=0 field.

p_piezo Electrodelnit|is used to build/verify a data structure describing master electric DOFs
associated with electrodes defined in your model. The info,Electrode stack entry is a structure
with fields

.data rows NodeId IsOpen gives the electrode nodes and for each one 1 if the circuit is open (voltage
free), and 0 if it is closed (voltage enforced or fixed, actuator).

.ver=1 is used to specify that the more general piezoelectric strategies of SDT >= 6.6 are used. This
is the combined with the [p_piezo Electrode2Case| command which builds piezo loads and
sensors. For SDT 6.5 strategies, use .ver=0.

.def .DOF, .lab_in only needed when combining multiple electrodes into a single input. The
.lab_in is a cell array of strings, you should end the string with V so that it shows @ for
associated charge sensors.

Each column gives the weighting coefficients associated with each electrode. Thus def=[1;0;1]
corresponds to a single equal input on electrodes 1 and 3. Note that it does not make sense to
combine electrical DOFs that are of mixed nature (actuator/sensor).

The .DOF field should contain NodeId+.21 since the potential corresponds to DOF .21.

The .lab_in field can be used to provide labels associated with each actuator/sensor defined
as a column of def. You should end the label with V so that the collocated sensor ends with a
Q label.

.cta .lab (optional) can be used to combine electrodes into sensors / actuators. Each row of .cta
defines a sensor (with matching .lab). Each column corresponds to an electrode declared in
the .data field. You cannot combine open and closed circuit electrodes. It is possible to use
both a .cta and a .def field.
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[model,datal=p piezo(’Electrodelnit’,model) ; generates a default value for the electrode stack
entry. Combination of actuators and sensors (both charge and voltage) is illustrated in section sec-
tion [6.3.4! .

3.5 Example 1 : Static response of a piezoelectric patch

3.5.1 Static response of a patch in extension mode

In this very simple example, the electric field and the strains are all constant, so that the electric
potential and the displacement field are linear. The example is treated analytically in section sec-
tion [2.4] . It is therefore possible to obtain an exact solution using a single volumic 8-node finite
element (with linear shape functions, the nodal unknowns being the displacements in z,y and z and
the electric potential ¢). Consider a piezoelectric patch whose dimensions and material properties
are given in Table The material properties correspond to the material SONOX_P502_iso in

Property Value
b 10 mm
w 10 mm
h 2 mm
E 54 GPa
v 0.41
d31 = d3o -185 10~ '2pC/N (or m/V)
ds3 440 10~ 2pC/N (or m/V)
di5 = das 560 10~2pC/N (or m/V)
el =el, =€l 1850 g9
€0 8.854 1012 Fm~1

Table 3.1: Geometrical and material properties of the piezoelectric patch

We first produce the mesh, associate the material properties and define the electrodes with
d_piezo(’TutoPzPatchExt-s1’) . The default material is SONOX_P502_iso. The number of ele-
ments in the z, y and z directions are given by n,,n, and n..

The information about the nodes associated to each electrode can be obtained through the following

call (Figure [3.4):

p_piezo(’TabInfo’,model)
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/0 name Nodeld
Top 5.0
Bottom 1.0

Figure 3.4: Tabinfo gives information about nodes associated to electrodes

In d_piezo(’TutoPzPatchExt-s2’) , the material is changed for example to PIC_255 with the fol-
lowing call, and the full set of mechanical, piezoelectric and permittivity matrices can be obtained
in order to check consistency with the datasheet (Figure [3.5]).

%% Step 2 Define material properties
model.pl=m_piezo(’dbval 1 -elas 2 PIC_255’);
p_piezo(’TabDD’ ,model) % creates the table with full set of matrices

Matld 1 cE elastic stiffness 0 E ...|Pa

9,36076E10 4 684125E10 4 229144E10 OEDD OEDD| 0EDD
4 684125610 9.388326E10 4 233161E10 OEDD OEDD) OEDD
4,229144E10] 4.253161E10 7,389928E10 OEDD OEDD| OEDD
QEDD) 0EOQD) 0EQD 2, 103E10 QEDD) QEOD
OEDD) OEDD) OEDD OEDD 2103610 OEDD
OEDD) 0EDD) OEQD OEDD OEDD) 2,333E10

Matld 1 sE| elastic flexibility 0 ... 1/Pa
1,610047E-11 -5,219771E-12 -6,209894E-12 OEDD OEDD) -DEOD
-3,219771E-12 1,610047E-11 -6,279182E-12 OEDD OEDD) -DEOD
-6,209894E-12 -6,279182E-12 2 069965E-11 OEDD OEDD) -0EDD
OEDD) OEOD) OEQD 4755112E-11 OEDD) -DEOD
OEDD) 0EOD) OEQD OEDD 4735112E-11 -DEOD
OEDD) OEDD) OEDD OEDD OEDD) 4 248894E-11

Matld 1 cD|elastic stiffness 0 El... Pa
1,039336E11 5,710994E10 2 464781E10 OEDD OEDD) 0EDD
5,710%94E10 1,040849E11 2 498594E10 OEDD OEDD) OEDD
2,464781E10] 2,498554E10 1,040462E11 OEDD OEDD) 0EDD
OEDD) OEOD) OEDD 3,72511E10 OEDD) 0EDD

Figure 3.5: Example subset of table with the full set of mechanical, dielectric and piezoelectric
coefficients in the 4 different forms of the constitutive equations

The next step (d_piezo(’TutoPzPatchExt-s3’) ) defines the boundary conditions and load case.
We consider here two cases, the first one where the patch is free to expand, and the second one
where it is mechanically constrained (all mechanical degrees of freedom are equal to 0).
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In d_piezo(’TutoPzPatchExt-s4’) , we can look at the deformed shape, and plot the electric field

for both cases.

E-field
Free patch, axial

Figure 3.6: Visualization of the electric field and deformed shape for the free patch under unit
voltage excitation

For the free patch deformed shape, we compute the mean strains from which ds1,dse and ds3 are
deduced. The values are found to be equal to the analytical values used in the model.

Relation between mean strain on free structure and d_3i
{’E3 mean’} {[500.00001 } {[5001} {’E3 analytic’}

{’sx’} {[-1.8000e-101} {[-1.8000e-10]} {’d_31’}
{’sy’} {[-1.8000e-10]} {[-1.8000e-10]} {vd_32’}
{’sz’} {[ 4.0000e-101} {[ 4.0000e-10]1} {’d_33’}

Note that the parameters of the constitutive equations can be recovered using
d_piezo(’TutoPzPatchExt-s5’) .

%% Step 5 : check constitutive law
% Decompose constitutive law
CC=p_piezo(’viewdd -struct’,cf); %
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where the fields of CC are self-explanatory. The parameters which are not directly defined are

computed from the equations presented in section [2.1].
For the constrained patch, we compute the mean stress from which we can compute the esq, ezo and

es3 values which are found to be equal to the analytical values used in the model.

Relation between mean stress on pure electric and e_3i
{’1x’} {[-8.3642]} {[-8.3642]} {’e_317}
{’1y°} {[-8.31781} {[-8.3178]} {’e_327}
{12’} {[14.29161} {[14.2916]1} {?e_33"}

In d_piezo(’TutoPzPatch-s6’) , we can also compute the charge and the charge density (in pC'/m?)
accumulated on the electrodes, and compare with the analytical values

{0x0 double } {’Top’ } {’Bottom’ }
{’Free patch, axial’ } {[7.7473e-10]} {[-7.7473e-10]}
{’Constrained patch, axial’} {[3.3876e-101} {[-3.3876e-10]}

Theoretical values of capacitance
{’cT’} {[7.7473e-10]}
{’cs’} {[3.3876e-10]}

Charge Charge
Free patch, axial 108 Constrained patch, axial 108
x x

pC/m?
S AN o v A~ o
S L b own s oo

VEx ¥Ex

Figure 3.7: Vizualisation of the total charge on the electrodes for the unconstrained and constrained
patch under unit voltage excitation

The results clearly show the very large difference of charge density between the two cases (free patch

or constrained patch).
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For this simple static example, a finer mesh can be used, but it does not lead to more accurate
results (this can be done by changing the values in the call to d_piezo(’mesh’) for example:

% Build mesh with refinement

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=5 ny=5 nz=2’);
% Now a model with quadratic elements

model=d_piezo(’MeshPatch lx=1e-2 ly=1le-2 h=2e-3 Quad’);

3.5.2 Static response of a patch in shear mode

As for the patch in extension, as the fields are also uniform (see section ), the problem can be
modelled with a single 8-node element. In d_piezo(’TutoPzPatchShear-s1’) , the patch is meshed
and then the poling is aligned with the —y axis by performing a rotation of 90° around the z-axis .

In d_piezo(’TutoPzPatchShear-s2’) and d_piezo(’TutoPzPatchShear-s3’) , the response is
computed both for the free case and the fully constrained case. The deformed shape for the free
case is shown in Figure together with the applied electric field:

E-field
Free patch, shear

Figure 3.8: Deformed shape of a piezoelectric patch poled in the plane with an electric field applied
in the out-of-plane direction

In d_piezo(’TutoPzPatchShear-s4’) , the mean of shear strain and stress is evaluated and com-
pared to the doy and ey piezo coefficients. Note that the mean values are computed in the global
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yz axis for which a negative strain corresponds to a positive strain in the local 23 axis.

Relation between mean strain on free structure and d_24
{’E3 mean’} {[500]} {[500]} {’E3 analytic’}
{’syz’} {[5.6000e-10] } {[5.6000e-10] } {’d_24°}

Relation between mean stress on pure electric and e_24
{’Tyz’} {[10.7234]} {[10.7234]1} {’e_24’}

Finally in d_piezo(’TutoPzPatchShear-s5’) , the capacitance is evaluated and compared to the
theoretical values, showing a perfect agreement, and demonstrating the difference with the extension
case for CS.

{0x0 double } {’Top’ } {’Bottom’ }
{’Free patch, shear’ } {[8.1900e-10]} {[-8.1900e-10]}
{’Constrained patch, shear’} {[5.1874e-101} {[-5.1874e-10]}

Theoretical values of capacitance
{’cT} {[8.1900e-10]}
{’cs’} {[5.1874e-10]}

3.6 Example 2: Dynamic response of a piezoelectric disk

In this next example, we consider a piezoelectric disk of thickness=2mm and radius=8mm which
has electrodes on the top and bottom surfaces. The material used is PIC181 from PI Ceramics. In
d_piezo(’TutoPzDiskImpedance-s1’) , the mesh and corresponding electrodes are generated and
represented in Figure [3.9
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PIC 181 piezo disk mesh

PIC 181 piezo disk electrodes

¥Ex

Figure 3.9: Piezo electric disk made of bulk PIC181 material (radius=8mm, thickness=2mm):
mesh(left) and electrodes(right)

In d_piezo(’TutoPzDiskImpedance-s2’) , we compute the dynamic response of the disk subjected
to an imposed voltage on the top electrode (the bottom electrode is grounded in the model), the

frequency range is from 20 to 200 kHz. We represent the voltage distribution on the disk, as well as
the electric field at 20 kHz in Figure [3.10

PIC 181 piezo disk voltage PIC 181 piezo disk E-field
Vin (20000 Hz) Vin (20000 Hz)

520
510
% 500
490

480

¥ex ¥Ex

Figure 3.10: Response of a piezoelectric disk made of bulk PIC181 material (radius=8mm,
thickness=2mm) at 20kHz, voltage distribution(left) and electric field (right)
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In d_piezo(’TutoPzDiskImpedance-s3’) , a charge sensor is defined on the piezoelectric disk, al-
lowing to compute the charge accumulated at each frequency for an accumulated input voltage. It
is represented in Figure [3.11{(left).

d_piezo(’TutoDiskImpedance-s4’) allows to compute the electrical impedance of the disk. It is
defined as Z = V/I = 1/(jw) V/Q and represented in Figure [3.1T|right). The anti-resonance in the
impedance curve around 140kHz corresponds to the short-circuited radial resonance frequency of
the disk, while the resonance around 160kHz corresponds to the open-circuit resonance frequency of
the disk. The spacing between these two frequencies can be used to compute the electromechanical
coefficient of the disk for the first radial resonance.

RESP Vin RESP: Vin
104 L
108 _
€
= S
g =
E
102
10-10 L
3 3
o
3 S 50
Z 100 z o}
Q Q
@ § 50 |
_E 0 L I 1 L L " L L ) s 1 1 1 L L I L 1 J
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency [Hz] x10° Frequency [Hz] x10%

Figure 3.11: Response of a piezoelectric disk made of bulk PIC181 material (radius=8mm,
thickness=2mm) from 20kHz to 200kHz, Q/V (left) and electric impedance (Ohm) (right)
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4.1 Input/Output shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a product {F'} =

[b] {u(t)} where

e the input shape matrix [b] is time invariant and characterizes spatial properties of the applied
forces

e the vector of inputs {u} allows the description of the time/frequency properties.

Similarly it is assumed that the outputs {y} (displacements but also strains, stresses, etc.) are lin-
early related to the model coordinates {g} through the sensor output shape matrix ({y} = [] {¢}).

Input and output shape matrices are typically generated with fe c, fe _case or fe_load. For sensors
see also Understanding what they represent and how they are transformed when model
DOFs/states are changed is essential.

Linear mechanical models take the general forms

[M32+CS+K]N><N {a(s)} = [b]NxNA {U(S)}NAXI (4.1)
{y(s)}nsx1 = lelnsxn {a(s) s .
in the frequency domain, and

(M) {q"} + [C){d'} + K] {a} = [B] {u(t)} (4.2)
{y(t)} = [ {a(t)} '

in the time domain.

N is the number of degrees of freedom in the model, N A is the number of independent actuators,
and NS is the number of sensors.

In the model form , the first set of equations describes the evolution of {¢}. The components of
q are called Degrees Of Freedom (DOFs) by mechanical engineers and states in control theory. The
second observation equation is rarely considered by mechanical engineers (hopefully the SDT may
change this). The purpose of this distinction is to lead to the block diagram representation of the
structural dynamics

{F(s)} {a(s)} {y(s)}

— [ [Ms?+ Cs + K] q +—-
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which is very useful for applications in both control and mechanics.

In the simplest case of a point force input at a DOF ¢;, the input shape matrix is equal to zero
except for DOF [ where it takes the value 1

[b] =

—_
—~
=
w
S~—

— 1

Since {g;} = [by]” {q}, the transpose of this Boolean input shape matrix is often called a localization
matrix. Boolean input/output shape matrices are easily generated by fe ¢ Input/output shape
matrices become really useful when not Boolean. For applications considered in the SDT they are
key to

o distributed FEM loads, see fe_load.
e the description of piezoelectric loads and sensors, see

e the description of sensors that do not directly correspond to DOFs (accelerations in non global
directions at positions that do not correspond to finite element nodes).

e model reduction. To allow the changes to the DOFs ¢ while retaining the physical meaning of the
I/0 relation between {u} and {y}.

4.2 Collocated force-displacement pairs

Collocated force-displacement pairs are commonly used in active vibration control, as they result
in an alternance of poles and zeros in the open-loop transfer functions, leading to unconditionally
stable control schemes (when actuators and sensors dynamics are neglected).

The fe case(’DofLoadSensDof’) command provides a generic way to build collocated pairs. On
first defines the sensors (related to DOFs in the model) and then creates the corresponding collo-
cated forces. This is illustrated In the d_piezo(’ TutoPzBeamCol’) demo below on a 3D model of a
U-shaped cantilever beam.

The first step d_piezo(’TutoPzBeamCol-s1’) consists in the meshing, application of boundary
conditions and point sensor definition.

The sensor is defined on node 104 in direction x with the following call.
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% Introduce a point displacement sensor and visualize
% sdtweb sensor#slab J URN based definition of sensors
model = fe_case(model,’SensDOF’,’Point Sensors’,{’104:x’});

Figure shows the finite element mesh of the U-beam with a sensor added on node 104 in the
x-direction. In (d_piezo(’TutoPzBeamCol-s2’) ), the load is then defined as being collocated to
the sensor, i.e, in the x-direction and on node 104 with the following call:

%% Step 2 : Introduce collocated force actuator and compute response
model=fe_case(model, ’DoflLoad SensDof’,’Collocated Force’,’Point Sensors:1’)
% 1 for first sensor if there are multiple

The static response of the U-beam to this load is computed with fe_simul and shown in Figure [4.2]

Ubeam PS1 oﬂ)ﬁ'

Figure 4.1: U-beam with displacement sensor added on node 104 in direction x
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Ubeam PS1 Static
Collocated Force (0 Hz)

2%

Figure 4.2: Static response of U-beam to load on node 104 in direction x

In d_piezo(’TutoPzBeamCol-s3’) , the collocated transfer function is then computed using fe_simul
and plotted in the iiplot environment (Figure [4.3).

RESP 104:Fx

[104:x|

phase (w) [deg]
3

o
=3

50 100 150 200 250 300
Frequency [Hz]

Figure 4.3: Collocated transfer function for a force applied on node 104 in direction x, and a
displacement at the same node and in the same direction

Multiple sensors and actuators can also be generated. In d_piezo(’TutoPzBeamCol-s4’) , the sin-
gle sensor is changed to two sensors (adding a sensor on node 344 in y-direction). Note that if the
same name is used in the definition of the sensors, the previous definition is replaced (here "Point
sensors’ is the name of the sensing case). The two sensors are shown on Figure

%% Step 4 : multiple collocated sensors and actuators
% Introduce two sensors and visualize
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model = fe_case(model,’SensDOF’, ’Point sensors’ ,{’ 104:x’; ’344:y’}) ;
cf=feplot(model);

Ubeam MS1 oau

Figure 4.4: U-beam with displacement sensor added on node 104 in direction x and 344 in direction
y

Two forces collocated to these sensors are then defined in d_piezo(’TutoPzBeamCol-s5’) , and the
static response is computed and shown in Figure [£.5

The four transfer functions resulting from the definition of two sensors and actuators are then com-
puted and plotted in d_piezo(’TutoPzBeamCol-s6’) . Two of them are collocated resulting in
alternance of poles and zeros (Figure , and the two others are not collocated and do not show
this alternance (Figure . Note that the two transfer functions are identical due to the reciprocity
in linear systems.
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UBeam
104:Fx (0 Hz)

¥x L ¥x

UBeam
344:Fy (0 Hz)

Figure 4.5: Static response of the U-beam to two loads (104-x, 344-y)
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Figure 4.6: Collocated transfer functions for two loads (104-x, 344-y)
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Figure 4.7: The 4 transfer functions for two loads (104-x, 344-y), and two collocated point sensors
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4.3 Non-collocated force-displacement pairs and combinations

The example below illustrates the general definition of actuators and sensors which are not collocated.

In d_piezo(’TutoPzBeamNCol-s1’) ), the mesh is created and two point sensors are defined as 104-x
and 207-y (Figure

Ubeam MSNC

ylx

Figure 4.8: Point sensors at node 104 in direction x and 207 in direction y

Then in d_piezo(’TutoPzBeamNCol-s2’) , two actuators are defined by combination of three forces
(207-x, 241-x and 207-y). The first actuator consists in two forces on nodes 207 and 241 in opposite
direction along x acting together, and the third force is on 207-y.

%% Step 2 : Define point actuators

% relative force between DOFs 207x and 241x and one point loads at DOFs 207y
data = struct(’DOF’,[207.01;241.01;207.02],’def’,[1 0;-1 0;0 11);
model=fe_case(model,’DoflLoad’,’Actuators’,data); %
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Ubeam MANC 1 B Ubeam MANC 2 -
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Figure 4.9: Load combinations for Ubeam

In d_piezo(’TutoPzBeamNCol-s3’) and (d_piezo(’TutoPzBeamNCol-s4’) ), the static and dy-
namic responses to these loads are computed and represented in Figure [£.10] and Figure [£.11]

UBeam UBeam
u1 (0 Hz) u2 (0 Hz)

Ex ¥Ex

Figure 4.10: Static responses of Ubeam to load combinations
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RESP u1 RESP u1

1104:x|

10710

e

phase (w) [deg]_,
3

o

phase (w) [deg]
g

°
o

50 100 150 200 250 300 0 50 100

150 200 250 300
Frequency [Hz]

Frequency [Hz]

RESP u2 RESP u2

1010

10710
10"

1012

[104:x]
[207:y]

e

phase (w) [deg]_,
g
phase (w) [deg]
E

o

°
o

50 100 150 200 250 300
Frequency [Hz]

o

50 100 150 200 250 300
Frequency [Hz]

Figure 4.11: Dynamic response of Ubeam to load combinations ul and u2, sensors on node 104 in
direction x, and 207 in direction y

4.4 Other types of actuators

Other types of loads, such as surface or volumic loads are handled by the fe load command
(sdtweb(’fe_load’) for more details) in SDT. The case of imposed displacement is handled with

fe_case(’DofSet’) calls. The following script illustrates the use of volume and surface loads on
the U-beam.

In d_piezo(’TutoPzBeamSurfVol-s1’) , the first load is defined by ’data’ and is a constant volumic
load in the y-direction. The second load, defined by ’data2’ is in the z-direction and its magnitude
depends both on the x and z position in the U-beam (f(x,z) = x * (z — 1)3). The two loads are
represented in Figures and using arrows and color codes (for the variable force only).
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Ubeam VLoad-Cst
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Figure 4.12: Constant volumic force applied in the y-direction
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Figure 4.13: Variable volumic force applied in the z-direction represented by arrows (left) and color

code proportionnal to amplitude in z-direction (right)

%% Step 1 Apply a volumic load and represent
model = femesh(’testubeam’);
data=struct(’sel’,’groupall’,’dir’, [0 32 0]);

data2=struct(’sel’,’groupall’,’dir’,{{0,0,’ (z-1).73.*x’}});

model=fe_case(model, ’FVol’,’Constant’,data,
’FVol’,’Variable’,data2);

% Visualize loads
cf=feplot(model); iimouse(’resetview’);
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% Make mesh transparent
fecom(’showfialpha’) %

% Visualize Load
fecom proviewon

% Improve figure
sdth.urn(’Tab(Cases,Constant){deflen, .5,arProp,"linewidth,2"}’,cf)
fecom curtabcases ’Constant’ 7 Shows the case ’Constant’

In d_piezo(’TutoPzBeamSurfVol-s2’) , the surface load is defined using selectors to define the
area of the surface where the load is applied. In this case, the load is on the surface corresponding
to x = —0.5 and z > 1.25. The resulting surface load is represented in Figure 4.14

%% Step 2 : Apply a surface load case in a model using selectors
data=struct(’sel’,’x==-.5",

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model, ’Fsurf’,’Surface load’,data); cf=feplot(model);

Ubeam SLoad > JF

ylx

Figure 4.14: Surface load applied on a specific surface of the U-beam

In d_piezo(’TutoPzBeamSurfVol-s3’) , the same is done using node lists.

%% Step 3 : Applying a surfacing load case in a model using node lists
data=struct(’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
NodeList=feutil (’findnode x==-.5’,model);
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data.sel={’’,’Nodeld’,’==’,NodeList};
model=fe_case(model, ’Fsurf’,’Surface load 2’,data); cf=feplot(model);

And lastly in d_piezo(’TutoPzBeamSurfVol-s4’) , the use of sets to define surface loads (Fig-

ure [4.15)) is illustrated.
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Figure 4.15: Surface load applied on a specific surface of the U-beam

%% Step 4 : Applying a surfacing load case in a model using sets

% Define a face set

[eltid,model .Elt]=feutil(’eltidfix;’,model);

il=feutil(’findelt withnode {x==-.5 & y<0}’,model);il=eltid(il);
i1(:,2)=2; % fourth face is loaded
data=struct(’ID’,1,’data’,il, ’type’, ’Faceld’);
model=stack_set(model, ’set’,’Face 1’,data);

% define a load on face 1
data=struct(’set’,’Face 1’,’def’,1,’D0OF’,.19);
model=fe_case(model, ’Fsurf’,’Surface load 3’,data); cf=feplot(model);

Another type of load is the case when degrees of freedom are imposed (imposed displacement, ve-
locity, acceleration, or electric potential in the case of piezoelectric actuators). The script below
illustrates the case where the U-beam has an imposed displacement on the cantilever side, in the
y-direction (Figure [4.16).
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In d_piezo(’TutoPzBeamUimp-s1’) , the mesh is created and the boundary conditions are applied.
One has to be careful not to block the degrees of freedom in the direction of the imposed motion (y
in this example):

%% Step 1 Meshing and BC

model = femesh(’test ubeam’);

% BC : Impose displacement - Fix all other dofs for Base
model=fe_case(model, ’FixDof’,’Clamping’,’z==0 -DOF 1 3’);

In d_piezo(’TutoPzBeamUimp-s2’) , the displacement at the base is imposed using a ’DofSet’
entry.

%% Step 2 Apply base displacement in y-direction
% find node z==0

nd=feutil (’find node z==0’,model);
data.DOF=nd+.02; data.def=ones(length(nd),1);
model=fe_case(model, ’DofSet’,’Uimp’ ,data);

Then in In d_piezo(’TutoPzBeamUimp-s3’) , a point sensor is introduced on node 104 in direction

y (Figure [L10).

Ubeam Uimp Sens Act

rod

¥x

Figure 4.16: Imposed displacement of the base of the U-beam in the y-direction, and sensor at node
104 in the y-direction

Finally in (d_piezo(’TutoPzBeamUimp-s4’) ), the transfer function is computed using fe simul
and plotted in the iiplot environment (Figure |4.17]).
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RESP Uimp
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Figure 4.17: Transfer function for an imposed displacement of the base of the U-beam in the y-
direction, and a displacement at node 104 in the y-direction

As expected, the static response is unitary, as the U-beam does not deform when a uniform unitary
displacement of the base is imposed, so that node 104 moves in the same direction and with the
same magnitude as the base.

Note that it is also possible to impose an acceleration when building state-space models, which will
be detailed in section 6.3 .

4.5 Other types of sensors

For point sensors, velocity and acceleration sensors can also be defined. The short script below in-
troduces a collocated sensor actuator pair on node 104 in direction x for the U-beam. The sensor is
either a displacement, velocity or acceleration sensor, and the resulting collocated FRFs are plotted

in Figure [4.1§

d_piezo(’TutoPzBeamDispVelAcc-s1’) allows to build the mesh, apply the boundary conditions,
and compute the mode shapes.

Then in d_piezo(’TutoPzBeamDispVelAcc-s2’) , a displacement, velocity and acceleration sensor
is defined at not 104 in direction x, and a collocated force is introduced.
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Figure 4.18: Collocated transfer functions with displacement, velocity and acceleration at the same
point

%% Step 2 : Introduce a point displ/vel/acc sensor and collocated force
model = fe_case(model,’SensDOF’,’Sensors’,{’104:X’;’104:vx’;’104:ax’});
model=fe_case(model, ’DofLoad SensDof’,’Collocated Force’,’Sensors:1’);
% 1 for first sensor if there are multiple

In d_piezo(’ TutoPzBeamDispVelAcc-s3’) ), the transfer function is computed for the three sensors
and represented in Figure

Other types of sensors are also defined in SDT using fe case(’Sens...’) calls. They are detailed
in the general SDT manual and are of the following type:

e general sensor (low level) base/sstruct#general

relative displacement sensor base/sstruct#rel

translation sensor base/sstruct#trans

triaxial sensors base/sstruct#triax

for laser vibrometers, defining line of sight of laser base/sstruct#laser


https://www.sdtools.com/helpcur/base/sstruct.html#general
https://www.sdtools.com/helpcur/base/sstruct.html#rel
https://www.sdtools.com/helpcur/base/sstruct.html#trans
https://www.sdtools.com/helpcur/base/sstruct.html#triax
https://www.sdtools.com/helpcur/base/sstruct.html#laser
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e [Fresultant| resultant force sensor.

e strain or stress sensor base/sstruct#strain

Refer to SDT general documentation for examples of definition of such transducers. SDT also pro-
vides advanced tools to define sensors which are not at the location of nodes in the finite element
models. For more details, see the documentation of the base/fe_sens| function.

In addition, piezoelectric sensors are discussed in the next section (section ).

4.6 Piezoelectric sensors and actuators

4.6.1 General theory

Essentially, when using piezoelectric materials in finite element models of structures, additional
electrical degrees of freedom are added to the model, generally in the form of voltage degrees of
freedom. The general form of the equations of motion was already given (see (3.8)) and is recalled
below:

[ 1 [ O [ B T = P )

The equations of motion couple the electrical DOFs to the mechanical ones through the matrices
Kyq and Kyv.

When piezoelectric materials are used for sensing and actuating, they have associated electrodes
which enforce equipotentiality on the surfaces. In the finite element model, this is taken into ac-
count by adding equality constraints between all the electrical DOF's associated to an electrode. One
single electrical DOF is then linked to each electrode, and these DOFs are used for actuation and
sensing.

Note that in the shell formulation of SDT, the electrical DOFs are not associated to nodes, but
rather to elements, as detailed in section . Each element can have several layers among which
some can be defined with piezoelectric material. Each piezoelectric layer of the shell element has
then one associated DOF which corresponds to the difference of potential between the top and the
bottom electrode of that layer. This is equivalent to considering that the bottom electrode of each
layer is set to 0 volts and that the electrical DOF represents the voltage on the top electrode.


https://www.sdtools.com/helpcur/base/sstruct.html#strain
https://www.sdtools.com/helpcur/base/fe_sens.html
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For 3D elements, each node has an additional associated electrical DOF, so that it is necessary to
define boundary conditions in terms of voltage on the two electrodes. In SDT, electrical DOFs are
identified with .21.

As explained in section [3.3| , actuation can be of two types: an electrical charge ) can be im-
posed on one of the electrodes, which is equivalent to defining a mechanical force, as this term
is on the right-hand-side of the equations. This case should be treated as the addition of point
loads using fe_case(’DofLoad’) calls. It is however more common to use piezoelectric actuators
in a voltage-driven mode, which corresponds to imposing the voltage, and can be treated using a
fe_case(’DofSet’).

Assume that the voltage DOFs can be divided in two parts :

m={ (45)

where V;,, corresponds to the voltages imposed on the actuators in the model, and the other voltage
DOFs are left free. We assume that the constraints related to the electrodes have already been taken
into account to reduce the different matrices. The first line of the equations of motion becomes
(assuming Ky is a diagonal matrix, which is usually the case as it corresponds to the matrix of
the individual capacitances) :

el e e U b L s U T e
0 0 vy 0 0 1% Ky, Kv,v, Vo | Qo
(4.6)
The fact that there is no coupling term in the mass and damping matrices leads to an equivalent

problem where an imposed voltage corresponds to a mechanical load — [Kgy;, ] {Vin }-

Piezoelectric sensors are also of two types. Voltage sensing corresponds to measuring the voltage
DOF directly, and can thus be defined by a simple fe case(’SensDOF’) call. If a charge amplifier
is used to measure the signal generated by the piezoelectrc sensor, this is equivalent to measuring
a reaction force at the associated electrical DOF. In order to do that, one first needs to fix the
associated electrical DOF using a fe_case (’FixDOF’) (if set to 0) or a fe_case(’DofSet’) (if used
both as voltage actuator and charge sensor as in the case of self-sensing and piezo-shunt applications)
call, and then define the charge sensor with a [p_piezo ElectrodeSens(] call. Assume again that
the electrical DOF's are divided in two parts

n={p} (47)

q

where V, are fixed electrical DOFs where the charge needs to be measured. The charge on these
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electrodes is then given by:

Q= [Kvq] {a} + [Kv,v, ] (Vo) (4.8)

The definition of actuators and sensors of these different types are illustrated below for a plate mod-
elled with shell elements, and an example of an accelerometer modelled with 3D elements.

4.6.2 Aluminum plate with 4 PZT patches (Shell model)

The first example deals with an aluminum plate with 4 piezoceramic patches. The geometry and
the material properties are given in Figure and Table

a4 L .
A
A& Pzt
g —
w

g d,
el pzr |
; 4—a> Td1

L =463 mm d,=15mm

a=55mm b=25mm

d,=12mm w =100 mm

d,=63mm thickness = 1.3 mm

Figure 4.19: Geometric details of the aluminum plate with 4 piezoceramic patches
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Property ‘ Value
Aluminum plate
E 72GPa
v 0.3
p 2700kg/m?>
Piezoceramic patches
E 54.05G Pa
v 0.41
P 7740kg/m3
thickness 0.25mm
ds1 -185 10~ '2pC/N (or m/V)
dso -185 10~ 2pC/N (or m/V)
el 1850 £
€0 8.854 10~ 12Fm~!

Table 4.1: Material properties of the plate and the piezoceramic patches

It corresponds to a cantilevered plate with 4 piezoelectric patches modeled using the|p_piezo Shell]
formulation.

The first step d_piezo(’TutoPzPlatedpzt-sl’) consists in the creation of the model, the defini-
tion of the boundary conditions, and the definition of the default damping coefficient. The different
meshing procedures are detailed further in section [5|. The resulting mesh is shown in Figure [4.20

One can have access to the piezoelectric material properties (Figure and the list of nodes as-
sociated to each pair of electrodes (Figure using calls. Here nodes 1055 to 1058
are associated to the four pairs of electrodes defined in the model. The corresponding degree of
freedom is the difference of potential between the electrodes in each pair corresponding to a specific
piezoelectric layer. In this models, layers 1 and 3 are piezoelectric in groups 2 and 3 (the internal
layer correspond to supporting aluminum plate). Therefore only .21 (electrical) DOF is associated
to nodes 1055-1058.

p_piezo(’TabDD’ ,model) ; % List piezo constitutive laws
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Plate_4pzt

2 x

Figure 4.20: Mesh of the composite plate. The different colors represent the different groups

73
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Matld 101 cE elastic stiffness 0 E field |GPa
6.491164803461954E7 2.661377569419401E7 0.0 0.0 -0.0
2.661377569419401E7 6.491164803461955E7 0.0 0.0 -0.0
0.0 0.0 1.9148936170212768E7  |0.0 -0.0
0.0 0.0 0.0 1.9148936170212768E7  |-0.0
-0.0 -0.0 -0.0 -0.0 1.9148936170212768E7
Matld 101 sE elastic flexibility 0 Elec ... |[1/GPa
1.8518518518518518E-8  |-7.592592592592502E-9 (0.0 -0.0 -0.0
-7.592592592592592E-9 |1.8518518518518518E-8 (0.0 0.0 -0.0
0.0 0.0 5.222222222227232E-8 |00 -0.0
-0.0 0.0 0.0 5.222222222227222E-8  |0.0
-0.0 -0.0 -0.0 0.0 5.222223222232222E-8
Matld 101 cD elastic stiffness 0 Elec d...|GPa
9.325568599816561E7 54957813657 74009E7 0.0 0.0 0.0
5.495781365774009E7 9.325568599816564E7 0.0 0.0 0.0
0.0 0.0 1.9148936170212768E7  |0.0 0.0
0.0 0.0 0.0 1.9143936170212768E7  |0.0
0.0 0.0 0.0 0.0 1.9148936170212768E7

Figure 4.21: Example subset of table with the full set of mechanical, dielectric and piezoelectric

coeflicients in the 4 different forms of the constitutive equations

ri=p_piezo(’TabInfo’,model); % List piezo related properties

Prold-Layer ElectricNodeld
Prold104-13 1055.0
Prold104-11 1056.0
Prold108-13 1057.0
Prold109-11 1058.0

1/0 name Modeld
Prold104-13 1055.0
Prold104-11 1056.0
Prold108-13 1057.0
Prold109-11 1058.0

Figure 4.22: Information about electrical master nodes related to each piezoelectric layer. Here
layers 1 and 3 for two zones with ProID 104 and 109 define the 4 piezoelectric patches

The next step d_piezo(’TutoPzPlatedpzt-s2’) consists in the definition of the actuators and
sensors in the model. Here, we consider one actuator on node 1055 (layer 3 of group 1), the four
piezoelectric patches are used as charge sensors, and the tip displacement of the cantilever beam is
measured at the right-upward corner of the beam (corresponding to node 1054 here). Note that in
order for Q-S1, Q-S2 and Q-S3 to measure resultant charge, the corresponding electrical difference
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of potential needs to be set to zero. If this is not done, then the charge sensors will measure a
charge close to zero (round-off errors) as there is no charge when the difference of potential across
the electrodes is free. For Q-Act, the electrical DOF is already fixed due to the fact that the patch
is used as a voltage actuator.

%% Step 2 - Define actuators and sensors and visualize

nd=feutil (’find node x==463 & y==100’,model);

model=fe_case(model, ’SensDof’, ’Tip’,{[num2str(nd) ’:z’]}); ’% Displ sensor

il=p_piezo(’TabInfo’,model);il=il.Electrodes(:,1);

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,i1(1)+.21, ...%Act
’E1t’ ,feutil(’selelt proid 104’,model))); % Elt defined for display

model=p_piezo(sprintf (’ElectrodeSens %i Q-Act’,i1(1)),model); 7 Charge sensors

model=p_piezo(sprintf (’ElectrodeSensQ %i Q-S1’,i1(2)) ,model);

model=p_piezo(sprintf (’ElectrodeSens %i Q-S27,i1(3)) ,model);

model=p_piezo(sprintf (’ElectrodeSensQ %i Q-S3’,i1(4)) ,model);

% Fix ElectrodeSensQ dofs to measure resultant (charge)

model=fe_case(model,’FixDof’,’SC*xS1-83’,i1(2:end)+.21);

cf=feplot(model); fecom(’view3’)

cf.mdl.name="Plate_4pzt’; d_piezo(’SetStyle’,cf); feplot(cf);

We can now visualize the voltage actuator and the tip displacement sensor. Note that to visualize
the piezoelectric actuator, it is necessary to associated a group of elements when defining it (see
fe case(’DofSet’) command above).

fecom(’showfialpha’)
fecom(’proviewon’)

% Arrow length and thickness
sdth.urn(’Tab(Cases,Tip) {Proview,on,deflen,20}’,cf)
sdth.urn(’Tab(Cases,Tip){arProp, "linewidth,2"}’,cf)
fecom(’curtabCase’,{’Tip’;’V-Act’})

Figure [4.23] shows the visualization of the tip sensor and voltage actuator.

We can also visualize the charge sensors (Figure [4.24]). Note however that in the case of plates, it is
not possible to distinguish on the visualization if the patch is on the top or the bottom of the plate,
so that Q-S2 and Q-S3 would give the same visualisation.

fecom(’curtabCase’,{’Q-S1’;’Q-S2’})
cf.mdl.name="Plate_4pzt_QS1-2’;d_piezo(’SetStyle’,cf); feplot(cf);
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In order to check the effect of the actuator, we compute the static response using the full model and
represent the deformed shape (Figure [4.25)) in d_piezo(’ TutoPzPlatedpzt-s3’) .

Plate 4pzt

V-Act (0 Hz)

#x

Figure 4.25: Deformed shape under voltage actuation on one of the bottom piezoelectric patches

We also compute the transfer function between the actuator and the four charge sensors, as well as
the tip sensor using the full model.

Figure [£.26) shows the different transfer functions from the voltage actuator to the tip displacement
sensor (left) and to all charge sensors (right). The figure shows that Q-SAct shows an alternance
of poles and zeros, but the smallest distance between the poles and zeros. This configuration corre-
sponds to transfer functions used for shunting applications. For QS1 to QS3, the pole-zero alternance
is lost due to the fact that the sensor and the actuator are not strictly collocated. The pole-zero
distance is also very different, although if we are looking at the structure with the beam theory, the
three FRF's should be identical. This demonstrates clearly the need for shell models, and the impact
of the location of the sensor on the pole-zero pattern, and pole-zero distances.

4.6.3 Piezoelectric shaker with an accelerometer mounted on top (3D model)

The second example deals with an accelerometer (sensor) mounted on a piezoelectric shaker (actua-
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RESP V-Act RESP V-Act Q-Act
Q-S1

10k Q-S3

10—15 E

Mixed |Q-*

10-16 L

10-17 L

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Frequency [Hz] Frequency [Hz]

phase (w) [deg]

Figure 4.26: Open-loop transfer function between V-Act and tip displacement (left), the 4 charge
sensors (right)

tor). The piezoelectric shaker consists of two steel cylindrical parts with a piezoelectric disc inserted
in between. The base of the shaker is fixed and the piezoelectric element is used as an actuator:
imposing a voltage difference between the electrodes results in the motion of the top surface of the
shaker to which the accelerometer is attached (Figure .

The piezoelectric properties for the sensing element in the piezoelectric shaker are given in Table [4.3]
The actuating element has the same properties as the sensing element and is poled through the
thickness, as the actuator.

Part Material E (GPa) p (kg/m?) v
Wear plate AlyO3 400 3965 0.22
Sensing element Piezo 54 7740 0.44
Proof mass Steel 210 7800 0.3

Table 4.2: Mechanical properties of the wear plate, sensing element and proof mass
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v\ Piezoelectric
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: 20 mm

Figure 4.27: Piezoelectric accelerometer attached to a piezoelectric shaker for sensor calibration

Property Value

d31 = d32 -185 10~ *2pC/N (or m/V)
ds3 440 10~12pC/N (or m/V)
dis = day 560 10~12pC/N (or m/V)
ely =el, =l 1850 g9

€0 8.854 10~ 12Fm~!

Table 4.3: Piezoelectric properties of the sensing element

The mesh is generated with d_piezo(’TutoPzAccShaker-s1’) and represented in Figure In
the meshing script, both a voltage and a charge sensor are defined for the piezoelectric disk in the
accelerometer for the top electrode, and the the bottom electrode potential is set to zero.

In d_piezo(’TutoPzAccShaker-s2’) , a voltage actuator is then added to the shaker top electrode,
while the bottom electrode potential is set to 0. The shaker is mechanically fixed at the bottom.

%% Step 2 - Define actuators and sensors
% —input "In" says it will be used as a voltage actuator
model=p_piezo(’ElectrodeMPC Top Actuator -input "Vin-Shaker"’,model,’z==-0.01’);
% —ground generates a v=0 FixDof case entry
model=p_piezo(’ElectrodeMPC Bottom Actuator -ground’,model,’z==-0.012");
% Voltage sensor will be used - remove charge sensor
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Acc_Shaker_Mesh

vEx

Figure 4.28: Mesh of the piezoelectric accelerometer attached to a piezoelectric shaker

model=fe_case(model, ’remove’,’Q-Top sensor’);

The different electrodes in the model can be visualized (Figure |4.29)) and each actuator/sensor can
be visualized separately (Figure |4.30)

Acc_Shaker_Electrodes

ylx

Figure 4.29: Top and bottom electrodes for shaker voltage actuator and accelerometer voltage sensor

% Visualize Vin electrode
fecom curtabcases Vin-Shaker Y
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% Visualize VSens electrode
fecom curtabcases ’V-Top sensor’

Acc_Shaker_VSens
Acc_Shaker_Vin

e
e

Wx ¥x

Figure 4.30: Shaker input voltage(left) and accelerometer output voltage(right)
We can have an overview of the electrodes and associated electrical DOFs (Figure [4.31)) :

rl=p_piezo(’TabInfo’,model); % List piezo related properties

1/ name MNodeld
Top sensor 17.0
Bottom sensor 11.0
Top Actuator 856.0
Bottom Actuator 854.0

Figure 4.31: Electrodes and associated nodes/DOF's
In d_piezo(’TutoPzAccShaker-s3’) , the FRF between the voltage applied on the piezoelectric

shaker and accelerometer response (voltage mode) is computed and represented in Figure m
together with the transfer function for the displacement of the base of the accelerometer.

% End of script
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RESP Vin-Shaker

|V-sensor(V)|

phase (w) [deg]
3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Frequency [Hz] %10°

|trans-1z|

deg]
<
N

phase (w) [

100

RESP: Vin-Shaker

0.2

0.4

0.6 0.8 1 1.2 1.4
Frequency [Hz]

16 18
x10°

Figure 4.32: FRF between the voltage applied on the piezoelectric shaker and accelerometer response
(voltage mode), and the displacement of the base of the accelerometer
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This section explains how to mesh plates with piezoelectric patches of different shapes. In all cases,
multi-layer plate elements are used to represent the host plate and the additional piezoelectric layers.
The first (basic) strategy consists in assigning additional layers with given piezoelectric properties
to regions of the mesh. The second approach uses a script to remesh locally the plate and add
piezoelectric layers according to a predefined set of patch shapes and piezoelectric properties.

5.1 Manual meshing

We consider again the example treated in section [4.6.2] , represented in Figure [4.19, The material
properties of the aluminum plate and the piezoceramic patches are given in Table The thickness
of the plate is 1.2mm, and the piezoelectric material corresponds to the SONOX_P502_iso material

inm_piezo Database|

In the first step d_piezo(’TutoPzMeshingBasics-s1’) , the mesh is built with simple SDT tools:

% See full example in d_piezo(’ScriptTutoPzMeshingBasics’)
d_piezo(’DefineStyles’);

%% Step 1 - Mesh the plate

model=struct(’Node’,[1 0 0 O 0 O O], ’E1lt’,[]1);

model=feutil (’addelt’ ,model, ’massl’,1);

% Note that the extrusion values are chosen to include the patch edges

dx=[linspace(0,15,3) linspace(15,15+55,10) linspace(15+55,463-5,50) 463];

model=feutil (’extrude O 1 0 0’,model,.001*unique(dx));

dy=[linspace(0,12,3) linspace(12,12+25,5) linspace(12+25,63,5)
linspace(63,63+25,5) linspace(63+25,100,3)];

model=feutil(’extrude O 0 1 0’,model,.001*unique(dy));

Note that the meshing is such that the patch edges corresponds to limits of elements in the mesh. It
is then possible to divided the mesh in different groups, related to the two areas where the patches
are added, and the host structure with no piezoelectric properties. Then a different ProlD is set for
the regions with piezoelectric patches.

This is done on the second step d_piezo(’TutoPzMeshingBasics-s2’)

%% Step 2 - Set patch areas and set different properties

model.Elt=feutil(’divide group 1 withnode{x>.015 & x<.07 & y>.013 & y<.037 }’,model);
model .Elt=feutil(’divide group 2 withnode{x>.015 & x<.07 & y>.064 & y<.088 }’,model);
model .Elt=feutil(’set group 1 proId3’,model);

model .Elt=feutil(’set group 2 prold4’,model);
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Visualizing the mesh and using fe_com(’colordatapro’) (see Figure [5.1) allows to check that dif-
ferent properties have been assigned to the two regions where piezoelectric patches need to be added.

Plate_4pzt

Ex

Figure 5.1: Mesh of the composite plate. The different colours represent the different groups

The next step d_piezo(’TutoPzMeshingBasics-s3’) is to define the material properties for the
host structure and the patches. Here, Sonoz_P502_iso is used:

%% Step 3 - Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

model .pl=m_piezo(model.pl,’dbval 3 -elas2 SONOX_P502_iso’);

% To avoid warning due to the use of simplified piezo properties.
model=p_piezo(’DToSimple’ ,model) ;

Piezoelectric material properties are divided in two parts. The first one (Prold 3 here) contains
the piezoelectric data, and is linked to elastic properties with ProlD 2 in this example through the
-elas2 command. If the piezoelectric properties do not exist in the database, it is always possible
to introduce them by hand with the following commands:
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model.pl=m_elastic(’dbval 1 Aluminum’);
d=zeros(1,18); d([11 13])=560e-12; d([3 6])=-185e-12; d(9)=440e-12;
eps=zeros(1,9); eps([1 5 9])= 8.854e-12%1850;
b elasid |dij coeff | dielectric coeffs
model.pl=[ model.pl zeros(1,24);
3 fe_mat(’m_piezo’,’SI’,2) 2 d eps;
2 fe_mat(’m_elastic’,’SI’,1) 54e9 0.41 7740 zeros(1,25)];

The piezoelectric and dielectric coefficients are stored in a vector of 18 (3x6 matrix) and 9 (3x3
matrix) values respectively. For more information see m piezo 2:General 3D piezo|

In d_piezo(’TutoPzMeshingBasics-s4’) , now that the material properties have been defined, it
is necessary to create laminates with three layers, the top and bottom layers being made of the
piezoelectric material (ProID 3), of thickness 0.25mm and the middle layer being the host structure
made of aluminum with thickness 1.2mm.

%% Step 4 - Laminate properties and piezo electrodes
model.il=p_shell(’dbval 1 laminate 1 1.2e-3 0’,
’dbval 2 laminate 3 2.5e-4 0 1 1.2e-3 0 3 2.5e-4 0’);

It is also necessary to assign electrodes to each patch, and an electrical DOF id. This single DOF
represents the difference of voltage between the top and bottom electrode and is the same for all
elements in the piezoelectric patch, as the electrodes impose equipotentiality. Here for example,
DOF 1682.21 is assigned to the first layer of group 1, and DOF 1683.21 to the third layer of the
same group.

%h%h Piezo electrodes

Folote NdNb LayerID NdNb LayerID
model.il=p_piezo(model.il,’dbval 3 shell 2 1682 1 0 1683 3 07);
model.il=p_piezo(model.il,’dbval 4 shell 2 1684 1 0 1685 3 07);

We can now check that the patches are implemented properly by computing the static response to
an applied voltage to the patch in group 1 (bottom). The layers are numbered from bottom to top,
so it corresponds to DOF 1682.21. Note that in order to find the top and bottom of an element for
more complex (curved) meshes, it is possible to use the following command to show the orientation
of the normal of the elements (Figure [5.2):
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Plate_4pzt_Normal_Orient
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Figure 5.2: Mesh of the plate with arrows showing the orientation of the normals to the elements

cf=feplot(model); fecom(’showmap’); fecom(’view3’);
% scale properly
fecom(’scalecoeff 1e-10’); fecom(’showmap’)

The electrical DOF corresponds to the difference of electrical potential between the top and bot-
tom electrodes, so if one applies a difference of potential of 1V, it results in a negative electric
field which is in the opposite direction of the poling direction (always in the positive z (normal)
direction for a plate element). Because the d3; and dso are negative coefficient, the resulting strain
is positive (negative electric field multiplied by negative constant). A positive strain at the bot-
tom of the plate should result in an upward motion of the tip of the beam, which is verified in
d_piezo(’TutoPzMeshingBasics-s5’) (Figure .

The tip-displacement is:

d = 2.5244e-06

The script above also defines three charge sensors on DOFs 1683.21, 1684.21 and 1685.21. If the
electrodes are not short-circuited, it would result in a zero-charge measured, so the electrical DOFs
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are set to zero for these three patches so that a resultant charge can be measured.

Plate 4pzt
V-Act (0 Hz)

vEx

Figure 5.3: Static response to a unit voltage application on one of the bottom piezoelectric patches

To implement a piezoelectric patch on a single side of the plate, it is important to treat properly the
offset, as the layer sequence is not symmetric with respect to the neutral plane of the plate. This is
done by using the z_0 parameter when defining the laminates. zg corresponds to the distance from
the mid-plane to the bottom of the plate (see sdtweb(’p_shell’)). It is illustrated in the last step
d_piezo(’TutoPzMeshingBasics-s6’) which is the same as the previous one but with piezoelectric
patches only on the bottom of the plate, in which case the offset should be zg = —0.6mm—0.25mm =
—0.85mm where 0.6mm is half the thickness of the support plate and 0.25mm is the thickness of
the piezo.

%% Laminate properties and piezo electrodes
% This is where an offset must be specified
%(else z0=-7.25e-4 (half of total thickness which is not correct).
model.il=p_shell(’dbval 1 laminate 1 1.2e-3 0’,
’dbval 2 laminate z0=-8.5e-4 3 2.5e-4 0 1 1.2e-3 0 ’);
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The difference of static response is:

d = 2.5244e-06
d2 = 3.1700e-06
difference of static response 25.5743J

The results show that the plate with only one piezoelectric element on the bottom is less stiff then
the case with piezos on both the top and bottom: the tip displacement is 25% higher (3.17 um/V
vs 2.52 pm/V) .

When the piezoelectric element is at the top of the plate, then the offset should be equal to the
thickness of the main plate divided by two (negative value).

5.2 Automated inclusion of piezo patches

The automated procedure requires the plate model to be defined in mm. In order to add the patches,
one needs to make a structure which contains the initial plate model and a description of the different
patches to be added.

In this example, the patches are assigned with +Rect.Sonox_P502_iso.5525TH0_25 where the sign
+/- specifies if the patch is on the top (+) or the bottom (-) of the plate, the first argument gives the
geometry (Rect for Rectangular), the second argument is the piezoelectric material type from the
database, the next argument is the size (55mm x 25mm here) and the last argument is the thickness
(0.25mm).

So the first step d_piezo(’TutoPzMeshingAuto-s1’) is to make the host plate. Here, we define a
mesh so that the edges of the piezoelectric patches will correspond to the mesh (as in the previous
example of meshing manually).

Then in d_piezo(’TutoPzMeshingAuto-s2’) we add four rectangular piezoelectric patches whose
size and shape comply with the mesh.

%% Step 2: Add patches
RG.list={’Name’,’Lam’,’shape’

’Main_plate’, model,’’ 7 Base structure

’Actl’, ... % name of patch

’Baseldl -Rect.Sonox_P502_iso.5525THO_25 +Rect.Sonox_P502_iso.5525TH0_25’,
struct(’shape’,’LsRect’, ... ’ Remeshing strategy (lsutil rect here)

’xc’,156+65/2,’yc’,12+25/2,alpha’,0, tolE’, . 1)
>Act2’, ... % name of patch
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’Baseldl -Rect.Sonox_P502_iso.5525THO_25 +Rect.Sonox_P502_iso.5525THO0_25’,
struct(’shape’,’LsRect’, ... 7 Remeshing strategy (lsutil rect here)
’xc’,15+465/2,°yc’ ,63+25/2,alpha’,0,’tolE’, . 1)
s
mol=d_piezo(’MeshPlate’,RG);
mol=stack_rm(mol,’info’,’Electrodes’); % Obsolete stack field to be removed
% To avoid warning due to the use of simplified piezo properties.
mol=p_piezo(’DToSimple’ ,mol);

The command +Rect.Sonox_P502_iso.5525TH0_25 refers to a patch which is added on the top of
the plate (+), is rectangular (Rect), is made of Sonox_P502_iso, is of size 55mm x 25mm (5525) and
thickness 0.25 mm (THO0-25). Then we need to specify the position of the patch with x¢’ and ’yc’
which correspond to the coordinates of its center.

The model obtained is here the same as the one previously obtained with manual meshing. The static
response when actuating the first piezo patch is computed in d_piezo(’TutoPzMeshingAuto-s3’)
. The value of the tip displacement is

dit = 2.5244e-09

Note that the automated meshing introduces the patches in the order of the description, so that
here the first piezoelectric patch is on the bottom (-), and the static response is downwards, as in
the case of manual meshing. This allows to compared the displacement at the tip which has the
same value (2.52 um/V).

Automated meshing can also be done when the patch edges do not coincide with the mesh of the
host plate. In this case, automated local remeshing is applied around the patches inserted. In
d_piezo(’TutoPzMeshingAuto-s4’) we take the example of an initial mesh of the plate with a
uniform mesh of prescribed element size (here around 7 mm). The script to add the four patches is
strictly identical, but the result is different due to the local remeshing.

The uniform mesh is generated with

%% Step 4 : use local remeshing element size is 7 mm
model=feutil(’objectquad 1 1’,[0 0 0;1 0 0;0 1 0],
feutil(Prefineline 7°,[0 463]),
feutil(Prefineline 7°,[0 100]));
model .unit="mm’;

The values of d1t and d2t correspond to the tip displacement when actuating the first piezo patch,
for the first model where the edges of the piezos correspond to the element sides in the mesh, and
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when there is a local remeshing. Due to the effect of the local remeshing (Figure , there is a
slight difference (=~ 1%). The values of tip displacement with the two different meshes are:

dit
d2t

2.5244e-09
2.4901e-09

V-Act (0 Hz)

Figure 5.4: Static response to a unit voltage application on one of the bottom piezoelectric patches

In d_piezo(’TutoPzMeshingAuto-s5’) , in order to check this effect, we can use a finer mesh of
the host structure and check for the convergence.

We see that when the plate mesh is finer (Figure , the local effect of remeshing is less and we
converge to the tip displacement when the piezoelectric patch edges coincide with the mesh.

A last example in d_piezo(’TutoPzMeshingAuto-s6’) is the addition of circular patches, where
we also check for convergence. The introduction of circular patches is done with the arguments
-Disk.Sonox_P502_iso.RC10THO_25 and +Disk.Sonox_P502_iso.RC10THO_25 which specifies a disk
made of Sonoz_P502_iso material with a radius RC of 10mm and a thickness T'H of 0.25 mm (same
thickness as the rectangular patches).

The circular patches are introduced with the following syntax:

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ 7 Base structure
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Figure 5.5: Convergence of the tip displacement when the size of the elements of the main plate
is varied, using local remeshing. The red line corresponds to the tip displacement with the mesh
conforming with the patch edges

’Act1’, ... % name of patch

’Baseldl -Disk.Sonox_P502_iso.RC10THO_25 +Disk.Sonox_P502_iso.RC10THO_25",
struct(’shape’,’lscirc’,’xc’,15+55/2,yc’,12+25/2),

’Act2’, ... % name of patch

’Baseldl -Disk.Sonox_P502_iso.RC10THO_25 +Disk.Sonox_P502_iso.RC10THO_25"’,
struct (’shape’,’lscirc’,’xc’,156+55/2, yc’ ,63+25/2) };

The local remeshing can be see in Figure [5.6

The last step d_piezo(’TutoPzMeshingAuto-s7’) allows to check convergence as for the rectan-
gular patches with automated meshing.

The convergence of the tip displacement can be see in Figure Note that the tip displacement is
about 5 times smaller than with the rectangular patches, which is mainly due to the circular shape
(less efficient than the rectangular shape for plate bending).

5.3 Using predefined patches

The different types of patches that can be integrated in plate meshes can be seen by typing the
command m_piezo Patchl At the moment of writing this documentation, the output is

{’Noliac.NCE51.RC12TH1’ } {’Noliac, material, disk ODiameter and THickness’}
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V-Act (0 Hz)

Figure 5.6: Static response to a unit voltage application on one of the bottom circular piezoelectric
patches
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Figure 5.7: Convergence of the tip displacement when the size of the elements of the main plate is
varied, for a circular piezoelectric patch
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{’SmartM.MFC-P1.2814° } {’Smart materials MFC d33, .Wile (dims mm)’ }
{’SmartM.MFC-P2.2814° } {’Smart materials MFC d31, .Wile (dims mm)’ }
{’Disk.Material .RC12TH1’ } {’Circular patch, material, geometry’ }
{’Rect.Material.2814TH_5’} {’Rectangular patch, material, geometry’ }

The last two types of patches are the ones used in the previous scripts, which correspond to rectangu-
lar and circular patches, for which the material can be chosen, as well as the geometrical properties.
The Noliac patch is a disk, and could be described with the generic Disk.Materia RCXXTHX com-

mand.

There also exist on the market packaged piezoelectric patches which are made of several layers, such
as the Macro Fiber Composite (https://smart-material.com). The properties of the different layers
are described in more details in section [7]. Two types of MFCs exist (P1, and P2).

The following example is the integration of two Pl-type MFC patches on a beam, modeled with
multi-layer shell elements. The example is further discussed in section [7.4].

The mesh resulting from d_piezo(’TutoPzMeshingMFC-s1’) is represented in Figure 5.8

The syntax for the MFC patches is:

RG.list={’Name’,’Lam’,’shape’

’Main_plate’, model,’’ 7 Base structure

’Actl’, ... % name of patch

’BaseIdl +SmartM.MFC-P1.8528 -SmartM.MFC-P1.8528°, ... % Layout definition
struct (’shape’,’LsRect’, ... 7 Remeshing strategy (1lsutil rect here)

’xc’ ,R0.c+R0.a/2,’yc’ ,R0.d+R0O.b/2, alpha’,0, ’tolE’,.1)

s
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Figure 5.8: Mesh of the plate with MFC transducers on top and bottom. The different colours
represent the different groups



96 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES



Model reduction and I/0
state-space models

Contents
6.1 Model reduction theory|. . . . . . . ... ... o oo o oo oo 98
[6.1.7 Normal modemodeld. . . . . . ... ... ... . L 99
6.1.2 Static correction to normal mode modelsf . . . ... ... ... .. ... .. 100
[6.1.3  Tlustration of modal truncation error and static correctionl . . . ... . .. 101
6.2 Statespacemodels| ... .. ... ... ... . 0 0 0 o oo e 108
6.2.1  General theory] . . . . . . . ... 108
16.2.2  State-space formulations with static correction| . . . . .. .. ... ... .. 109

16.2.3  State-space models with static correction: illustration on the tower example| 110

6.3 State-space models with imposed displacement and acceleration| . . . . 111
16.3.1  State-space models with imposed displacement| . . . . . . .. ... ... .. 112
16.3.2  State-space models with imposed acceleration| . . . . . . ... ... ... .. 116
6.3.3  Model reduction and state-space models for piezoelectric structures|. . . . . 122
6.3.4  Example of a cantilever beam with 4 piezoelectric patches| . . . . . . . . .. 124

6.4 State-space models and Craig-Bampton model reduction| . . ... ... 129
6.4.1  State-space models with imposed displacements using CB matrices| . . . . . 130
16.4.2  State-space models with imposed accelerations| . . . . . ... .. ... ... 136

[6.4.3  State-space models with imposed voltage (piezoelectric actuators)| . . . . . 140




98 CHAPTER 6. MODEL REDUCTION AND 1/0O STATE-SPACE MODELS
6.1 Model reduction theory

Finite element models of structures need to have many degrees of freedom to represent the geomet-
rical details of complex structures. For models of structural dynamics, one is however interested
in

e a restricted frequency range (s =iw € w1 wa))

e a small number of inputs and outputs (b, ¢)

e a limited parameter space o (updated physical parameters, design changes, non-linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models that accurately
represent the dynamics of the full order model in all the considered loading/parameter conditions.
Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they seek solutions in
the subspace generated by a reduction matrix 7. Assuming {q} = [T] {qr}, the second order finite
element model is projected as follows

[TTMTs? + TTCTs +TTKT| y . vp {1ar(8)} = [T70] y oo va £005) v axa
{y(3>}NS><1 = [CT]NSXNR {QR(S)}NRxl

Modal analysis, model reduction, component mode synthesis, and related methods all deal with an
appropriate selection of singular projection bases ([T]y, yp With NR < N). This section summa-
rizes the theory behind these methods with references to other works that give more details.

(6.1)

The solutions provided by SDT make two further assumptions which are not hard limitations but
allow more consistent treatments while covering all but the most exotic problems. The projection is
chosen to preserve reciprocity (left multiplication by 77 and not another matrix). The projection
bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved for a given
frequency and parameter range

(] [Z(s,0)] 7 [b] = [eT] [TT Z(s,0)T] " [T7D] (6.2)
where Z(s, @) is the dynamic flexibility Z(s) = [K 4+ Cs + M s?| for a given set of parameters o

Traditional modal analysis, combines normal modes and static responses. Component mode synthe-
sis (CMS) methods extend the selection of boundary conditions used to compute the normal modes.
The SDT further extends the use of reduction bases to parameterized problems.

A key property for model reduction methods is that the input/output behavior of a model only

depends on the vector space generated by the projection matrix 7. Thus range(T) = range(T)
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implies that
_ 1 T o7 —1
1) [1727) " [178] = | |17 27| [T7Y) (6.3)
This equivalence property is central to the flexibility provided by the SDT in CMS applications
(it allows the decoupling of the reduction and coupled prediction phases) and modeshape expansion

methods (it allows the definition of a static/dynamic expansion on sensors that do not correspond
to DOFs).

6.1.1 Normal mode models

Normal modes are defined by the eigenvalue problem

(_WJZ [M] + [K])NX]V {¢j}Nx1 = {O}le (6.4)

based on inertia properties (represented by the positive definite mass matrix M) and underlying
elastic properties (represented by a positive semi-definite stiffness K). The matrices being positive,
there are N independent eigenvectors {¢;} (forming a matrix noted [¢]) and eigenvalues wf (forming

a diagonal matrix noted [\w]z\] ).

As solutions of the eigenvalue problem (6.4)), the full set of N normal modes verify two orthogonality
conditions with respect to the mass and the stiffness

0" [M]1¢] = [ug | and [0l" [K][0] = [\, (6.5)

where p is a diagonal matrix of modal masses (which are quantities depending uniquely on the way
the eigenvectors ¢ are scaled).

In the SDT, the normal modeshapes are assumed to be mass normalized so that [p] = [I] (implying
[¢]" [M][¢] = [I] and [¢]" [K][¢] = [\wjz-\} ). The mass normalization of modeshapes is indepen-

dent from a particular choice of sensors or actuators.

Another traditional normalization is to set a particular component of ggj to 1. Using an output shape
matrix this is equivalent to ¢;¢; = 1 (the observed motion at sensor ¢; is unity). ¢j, the modeshape
with a component scaled to 1, is related to the mass normalized modeshape by ¢; = ¢;/(c1¢;).

mj(er) = (ag;) ™ (6.6)

is called the modal or generalized mass at sensor ;.

Modal stiffnesses are are equal to
ki(a) = (ags) w) (6.7)
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The use of mass-normalized modes, simplifies the normal mode form (identity mass matrix) and
allows the direct comparison of the contributions of different modes at similar sensors. From the
orthogonality conditions, one can show that, for an undamped model and mass normalized modes,
the dynamic response is described by a sum of modal contributions

N {egi} 17 b
a(s)] = S B I Jr{wz } (6.8)
j=1 j

which correspond to pairs of complex conjugate poles \; = Fiw;.

In practice, only the first few low frequency modes are determined, the series in (6.8) is truncated,
and a correction for the truncated terms is introduced (see section ).

6.1.2 Static correction to normal mode models

Normal modes are computed to obtain the spectral decomposition . In practice, one distin-
guishes modes that have a resonance in the model bandwidth and need to be kept and higher
frequency modes for which one assumes w < w;. This assumption leads to

ST R IO R 2 GO A UR G RCOR O’ 69)

j=1 5"+ wj j=Np+1 WJ

For applications in reduction of finite element models, from the orthogonality conditions (6.5)), one
can easily show that for a structure with no rigid body modes (modes with w; = 0)

N {pi} {70
[Ta] = (K] 0] = {2} (6.10)

j=1 Wj

The static responses [K ]71 [b] are called attachment modes in Component Mode Synthesis appli-
cations [4]. The inputs [b] then correspond to unit loads at all interface nodes of a coupled problem.

One has historically often considered residual attachment modes defined by

NR {¢;} 195 b
[Tar] = [K]7"[o] = jg} (6.11)
j=1 J

where N R is the number of normal modes retained in the reduced model.



6.1. MODEL REDUCTION THEORY 101

The vector spaces spanned by [¢1...0nr Ta] and [¢1...¢nr Tar] are clearly the same, so that
reduced models obtained with either are dynamically equivalent. For use in the SDT, you are en-
couraged to find a basis of the vector space that diagonalizes the mass and stiffness matrices (normal
mode form which can be easily obtained with fe norm).

Reduction on modeshapes is sometimes called the mode displacement method, while the addi-
tion of the static correction leads to the mode acceleration method.

When reducing on these bases, the selection of retained normal modes guarantees model validity
over the desired frequency band, while adding the static responses guarantees validity for the spatial
content of the considered inputs. The reduction is only valid for this restricted spatial/spectral
content but very accurate for solicitation that verify these restrictions.

Defining the bandwidth of interest is a standard difficulty with no definite answer. The standard,
but conservative, criterion (attributed to Rubin) is to keep modes with frequencies below 1.5 times
the highest input frequency of interest.

6.1.3 Illustration of modal truncation error and static correction

The concepts of model reduction using normal modes and static corrections are illustrated on a
cantilever beam example. Figure shows a tower of height L. = 140m excited at the tip and
for which the displacement in the horizontal direction is computed at the same point where the
excitation is applied (leading to a collocated transfer function). The full model solution is compared
to a truncated solution where NR = 3. The beam is made of concrete with a Young’s modulus
E = 30GPa, a Poisson’s ratio v = 0.2 and a mass density p = 2200kg/m?. The section of the beam
is a square hollow section with outer dimensions 20m x 20m and a thickness of 30cm.
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Figure 6.1: Cantilever beam excited at the tip in the horizontal direction

The script below details explicitely the different steps to compute the response using the reduced
model. It uses low-level calls which are not computationally efficient in SD'T but illustrate the strat-
egy. The first step d_piezo(’TutoPzTowerRed-s1’) consists in building the mesh, preassembling
the matrices [K] and [M] and defining the tip-load and tip-sensor.

The frequency band of interest is [0 10] Hz, in d_piezo(’TutoPzTowerRed-s2’) , we only keep the
mode shapes which have a frequency below 15 Hz (1.5 x 10 Hz), i.e. in this case the first three
bending modes, and compute the transfer function between a force acting on the tip of the beam in
the horizontal direction, and the displacement at the tip in the same direction. We use first explicit
computations after building matrices, which is not the most efficient in terms of computational time,
but is aimed at illustrating the methodology with low-level calls.

%% Step 2 : Build Reduced basis (3 modes) and compute TF

% M and K matrices have been built with fe_mknl in d_piezo(’MeshTower’)
M=model.K{1}; K=model.K{2};

% Excitation

Load=fe_load(model); b=Load.def;

% Projection matrix for output

sens=fe_case(model,’sens’);

[Case,model .DOF]=fe_mknl (’init’,model); 7% Build Case.T for active dofs
cta=sens.cta*Case.T;
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% Compute Modeshapes

def=fe_eig(model);

% Rearrange with active dofs only
def.def=Case.T’*def.def; def.DOF=Case.T’*def.DOF;

% Build reduced basis on three modes
T=def.def(:,1:3);

% Reduce matrices and compute response - explicit computation
Kr=T’*K*T; Mr=T’*M*T; br=T’*b;

% Define frequency vector for computations
w=linspace(0,30%2*pi,512) ;7% Extended frequency range

% Solution with full and reduced matrices - explicit computation
% Use loss factor =0.02 = default for SDT (1% modal damping)
for il=1:length(w)
U(:,11)=(K*x(1+0.02*%1i)-w(il) “2*M)\b;
%Default loss factor is 0.02 in SDT
Ur(:,1i1)=(Kr*(1+0.02*%1i)-w(il) "2*Mr)\br; %Reduced basis
end

% Extract response on sensor and visualize in iicom
outl=ctaxU; out2=cta*x(T*Ur);

% Change output format to be compatible with iicom
COm=d_piezo(’BuildC1’,w’/(2*pi),outl.’,’d-top’,’F-top’); COm.name=’Full’;
Clm=d_piezo(’BuildC1’,w’/(2*pi),out2.’,’d-top’,’F-top’); Clm.name=’3md’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,COm.name,COm;’curve’,Clm.name,Clm});

iicom(’submagpha’)
d_piezo(’setstyle’,ci); set(gca,’XLim’, [0 10])

103



104 CHAPTER 6. MODEL REDUCTION AND 1/0O STATE-SPACE MODELS
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Figure 6.2: Transfer function between the tip displacement and the tip force: Comparison between
the exact solution and a solution obtained by truncating the expansion in the modal basis to the
first three bending modes

The transfer function computed with the full model is compared to the reduced model using only
the first three modes of the beam in Figure [6.2l The agreement is very good at the resonances
(poles) but there are some discrepancies around w = 0 (not clearly visible due to the logarithmic
scale) and close to the anti-resonances (zeros). This is due to the contribution of the modes at higher
frequencies which are not taken into account.

Frequency response functions are more efficiently computed using fe simul in SDT. The general
strategy to follow if one wants to use this function to compute the response of any given reduced
model is to call fe_reduc. Several model reduction methods exist in the native function, but if one
wants to implement another strategy, it is possible to call an external function. As using only mode
shapes for model reduction is not accurate enough, this strategy is not implemented in fe reduc.

In d_piezo(’TutoPzTowerRed-s3’) , we show how to call an external function to build a reduced
basis consisting only of the first N modes of a structure (here N = 3). The results obtained are

identical to the direct explicit approach (Figure .

%% Step 3 - Compute with fe_simul Full/3md
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% Full model response

CO=fe_simul (’dfrf -sens’,stack_set(model,’info’,’Freq’,w/(2%pi)));
% —sens option projects result on sensors only

CO.name="Full’; CO.X{2}={’d-top’}; C1.X{3}={’F-top’};

% With reduced basis 3 modes

model = stack_set(model,’info’,’Eiglpt’,[5 3 0]); % To keep 3 modes
% Build super-element with 3 modes

SEl=fe_reduc(’call d_piezo@modal -matdes 2 1 3 4’,model);

% Make model with a single super-element
SEO = struct(’Node’,[]1,’Elt’,[]1);
mo1l fesuper (’SEAdd 1 -1 -unique -initcoef -newID sel’,SE0,SE1l) ;

% Define input/output
mol=fe_case(mol, ’SensDOF’,’Output’,21.01);
mol=fe_case(mol,’DofLoad’,’Input’,21+.01,1);

% Compute response with fe_simul
Cl=fe_simul (’dfrf -sens’,stack_set(mol,’info’,’Freq’,w/(2*pi)));
C1.name=’3md+SE’; C1.X{2}={’d-top’};

It requires to build a function modal.m which is called by fe reduc, the script of this function is
given below:

function SE=modal()
%% just modal

% Transfers model to function
eval(iigui({’model’,’Case’}, ’MoveFromCaller’))
eval(iigui({’RunOpt’}, ’GetInCaller’))

% clean up model to remove info about matid/proid
SE=feutil(’rmfield’,model,’pl’,’il’,’unit’,’Stack’);

% Compute modeshapes
def=fe_eig({model.K{1},model.K{2},Case.T,
Case.mDOF},stack_get(model,’info’,’Eigopt’,’g’));
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% reduce matrics based on N modes

SE.K = feutilb(’tkt’,def.def,model .X);
SE.DOF=[1:size(SE.K{l},l)]’+.99; % .99 DOFS
SE.Klab={’m’ ’k? ¢’ ’4’};

SE.TR=def; SE.TR.adof=SE.DOF;

% assign to output
assignin(’caller’,’T’,SE)
assignin(’caller’,’Case’,’’);

The truncation error can be drastically reduced using static correction.
In d_piezo(’TutoPzTowerRed-s4’) , a new reduced basis is therefore computed using fe norm to
orthogonalize the basis with respect to [K] and [M]. This is illustrated using low level calls.

%% Step 4 : Reduced basis 2 : 3 modes + static corr - explicit

Tstat=K\b;
T=fe_norm([def.def(:,1:3) Tstat],M,K); % Orthonormalize vectors

% Reduced matrices
Kr=T’*K*xT; Mr=T’*MxT; br=T’*b;

% Ref solution

for il=1:length(w)
Ur2(:,i1)=(Kr*(1+0.02*1i)-w(il) "2*Mr)\br;

end

out3=ctax (T*Ur2) ;

C2m=d_piezo(’BuildC1’,w’/(2*pi),out3.’,’d-top’, ’F-top’); C2m.name=’3md+Stat’;
iicom(ci,’curveinit’,{’curve’,COm.name,COm; ’curve’,C2m.name,C2m}) ;
iicom(’submagpha’); d_piezo(’setstyle’,ci);

The transfer function computed using the static correction to the applied load is represented in
Figure [6.3] in the extended frequency range from 0 to 30 Hz. The figure shows that the match is
now excellent from 0 to 10 Hz. The static response and the anti-resonances (zeros) are predicted
accurately. This is very important for active vibration control applications where the frequencies of
the zero play a major role for predicting the performance of the active control scheme implemented.
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Figure 6.3: Transfer function between the tip displacement and the tip force: Comparison between
the exact solution and a solution obtained with a reduced basis containing the first three modes and
the static correction to the applied tip-load [0-30 Hz]

Extending the frequency range for computations allows to show the behavior of the model at higher
frequencies, and illustrates the fact that an additional non-physical mode is present when using nor-
mal modes and static correction, whose contribution in the frequency band of interest is the same
as the combination of all the contributions of the higher frequency modes for the full model. Note
that the first zero after the three modes in the frequency band of interest is not correct, even with
the static correction.

The model reduction with N modes + static correction is natively implemented in the fe _reduc as
illustrated in d_piezo(’TutoPzTowerRed-s5’)

%% Step 5 with fe_simul
model=d_piezo(’meshtower’);
model = stack_set(model,’info’,’Eiglpt’,[5 3 0]); % To keep 3 modes

% Reduce model with 3 modes and static correction
mol=fe_reduc(’free -matdes -SE 2 1 3 4 -bset’,model);
% Compute response with fe_simul and represent
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C2=fe_simul (’dfrf -sens’,stack_set(mol,’info’,’Freq’,w/(2*pi))); %
C2.name=’3md+Stat-SE’; C2.X{2}={’d-top’};
ci=iiplot;iicom(ci,’curveinit’,{’curve’,C0.name,C0;’ curve’,C2.name,C2});
iicom(’submagpha’); d_piezo(’setstyle’,ci);

It gives identical results as the direct explicit computation (Figure [6.3]).

If the number of modes in the frequency band of interest becomes large, the technique becomes
much more costly: the eigenvalue solver will need to compute more mode shapes, which increases
strongly the computational time, and the number of equations to solve is also high. Usually, as the

frequency increases, the modal density increases as well, so that the modal projection technique is
not efficient anymore.

6.2 State space models

6.2.1 General theory

While normal mode models are appropriate for structures, state-space models allow the represen-
tation of more general linear dynamic systems and are commonly used in the Control Toolbox or
SIMULINK. The standard form for state space-models is

{a} = [A{=()} + [B]{u(?)} (6.12)

{y} = [C]{z()} + [D{u(t)} '
with inputs {u}, states {x} and outputs {y}. State-space models are represented in the SDT, as
generally done in other Toolboxes for use with MATLAB, using four independent matrix variables a,
b, ¢, and d (you should also take a look at the LTI state-space object of the Control Toolbox).

The transfer functions from inputs to outputs are described in the frequency domain by

{y(s)} = (IC11s = A" [B] + [D]) {u(s)} (6.13)

A state-space representation of the nominal structural model (4.1)) is given by
g | _ 0 I q 0
{ q" }_ [ -M7'K -M~'C } { q }+ [ M~ ] tul®)} (6.14)
¢ :
wen =t o {4}

The interest of this representation is mostly academic because it does not preserve symmetry (a useful
feature of models of structures associated to the assumption of reciprocity) and because [M] ' [K]
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is usually a full matrix (so that the associated memory requirements for a realistic finite element
model would be prohibitive). The SDT thus always starts by transforming a model to the normal
mode form and the associated state-space model .

The natural state-space representation of normal mode models (6.4)) is given by

U b=l U0 e Lo | o1
|

Wy =leo o { 1
p

Transformations to this form are provided by nor2ss and fe2ss. Note however that, as demon-
strated in section [6.1.3], using strictly the modeshapes in the reduced state-space model is generally
not sufficient to obtain a proper representation of the zeros, which are very important in control ap-
plications. fe2ss uses two different representations for reduced state-space models based on normal
modes and static corrections, which are detailed in the next section.

6.2.2 State-space formulations with static correction

As shown in section [6.1.2], it is possible to augment the basis of modeshapes with static corrections to
applied loads to form an accurate reduction basis. Once the basis is orthonormalized, the additional
vectors due to static corrections appear as additional modes in the basis. The transformation to a
state-space model is straightforward using , but has the disadvantage to increase considerably
the size of the model if a large number of input forces are considered. An alternative is presented
below.

We recall that the modal decomposition of the flexibility matrix given by:

ety K| Z{qﬁj}{@ B, 5~ G .10

s+w w2

j=NR+1 J
can be rewritten using as:
NR T
s2 +w =y wj

which shows that the last two terms are proportional to the input [b] and constant (do not depend
on w). They can therefore be introduced in matrix d of the state-space model, with matrices a,b
and c corresponding to the case where only the normal modes are retained . The state-space
model then becomes :
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{ 11))’/’ }: { —?22 —IF ] { 5’ }+ { ¢gb ] tut} (6.18)

where
NR ) RVA

The advantage of building the state-space model with such an approach is that the number of degrees
of freedom is not increased, and that the [d] matrix introduces a static contribution which cannot
be destabilized by a controller, if active damping is applied for example. It introduces however a
non-physical feed-through term which is directly proportional to the input force. This violates the
principles of wave propagation: if the response to a rectangular impulse is computed for example,
the wave should arrive to the sensors after a time related to the distance and wave velocity in the
medium, and here, due to the non-zero [d] matrix, a part of it arrives instantaneously.

Building state-space models with static corrections but no additional high-frequency modes can be
done with the option -dterm in fe2ss.

6.2.3 State-space models with static correction: illustration on the tower exam-
ple

The cantilever beam (tower) example presented in section is considered again, and the two
approaches (additional mode and [d] matrix approach) to build a state-space model are illustrated
below.

The first step d_piezo(’TutoPzTowerSS-s1’) consists in building the mesh and defining actuators
and sensors as before.

Then in d_piezo(’TutoPzTowerSS-s2’) , the state-space model is created either with a 'dterm’ or
with an additional mode, and the transfer function between 'F-top’ and ’d-top’ is computed.

% Step 2 : State-space models
[sys,TR] = fe2ss(’free 5 3 0 -dterm’,model);
[sys2,TR2] = fe2ss(’free 5 3 0 ’,model);

w=linspace(0,30%2*pi,512) ;% Frequency range
% Convert to curve object and relabel X (fe2ss uses dofs and not sens/act names)
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Cl=gbode(sys,w, ’struct-lab’);Cl.name=’SS-dterm’; C1.X{2}={’d-top’};
C2=qgbode(sys2,w, ’struct-lab’) ;C2.name=’SS-mode’; C2.X{2}={’d-top’};

ci=iiplot;

iicom(ci,’curveinit’,{’curve’,Cl.name,Cl;’curve’,C2.name,C2}); iicom(’submagpha’)
d_piezo(’setstyle’,ci);

h

Figure shows that with the two approaches, the state-space model gives a correct representation
of the transfer function in the frequency band of interest [0 10] Hz, but that the behavior is different
at higher frequencies. The -dterm option does not introduce a high frequency mode, but the transfer
function does not have a high-frequency roll-off due to the added constant term.

SS-dterm
SS-mode
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Figure 6.4: Transfer function between the tip displacement and the tip force: Comparison between
state-space models using the d-term approach or the additional high-frequency mode for static

correction

6.3 State-space models with imposed displacement and accelera-
tion

In order to be able to impose a displacement or acceleration instead of a mechanical load, the
displacement vector {q} is divided in two contributions:
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{a} = [Tc]{ac} + [T1] {ar} (6.20)

where {q;} is the part of {¢} on which either a displacement or an acceleration need to be imposed (I
is used as a reference to ”interface”), and {gc} represents the remaining dofs where no displacement
or acceleration is imposed. As will be discussed later, different choices can be used for [T7] and [T¢].

We assume a general form of these matrices where for the degrees of freedom related to imposed
displacement or acceleration in {q}, the associated lines in [T¢| must be all zeros, and for the [T7]
matrix, all zeros except one on the column related to this degree of freedom. In doing so, the degrees
of freedom related to {q;} are the physical displacements of the structure where the displacement
or acceleration needs to be imposed.

If the full finite element model of the structure is used, matrix [T is a N x N identity matrix from
which the columns corresponding to the imposed dofs have been removed.

The strategy to choose matrix [T7] will differ for the case of imposed displacement and acceleration,
as will be detailed below. Using (6.20)), the equations of motion (4.2)) become (u(t) = 0)

(M) ([Te){ac:} + [T {ar }) + [C1([Tel {ac } + [T1) {di}) + (K] ([Te]{ac} + [T1]{ar}) =0 (6.21)

and after premultiplying by [TC]T and putting the unknown displacements {gc} to the left-hand
side of the equation, we get

(Mool {qt} + [Cocl{4c} + (Kool {ac} = — [To)" (IM[T1) {a7 } + [C)[T1) {47} + K] [T1) {%I}) |
6.22
where [Mcc], [Coc] and [Kcc] are the mass, damping and stiffness matrices with fixed boundary
conditions at the degrees of freedom corresponding to {qs}. The subscript C' stands for constrained,
as the equations of motion in correspond to a dynamic problem for which the degrees of
freedom corresponding to the imposed motion are fixed, and the imposed displacement, velocity or
accelerations correspond to an equivalent mechanical force vector.

As such, it is difficult to build a state-space model from these equations, whether for imposed dis-
placement or acceleration, because only one of the two is imposed and the other is unknown.

6.3.1 State-space models with imposed displacement

For imposed displacement, the typical choice for [T7] consists in taking a matrix which is limited
to the degrees of freedom where the displacement is imposed. All terms on the rows corresponding
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to the non-imposed degrees of freedom are therefore equal to 0. In this case, the forces acting on
the structure are limited to the degrees of freedom which are coupled to the interface through the
stiffness, mass, and damping matrices. If the mass matrix is diagonal, there is no such coupling, and
if it is not, the coupling is very weak, so that the forces related to inertia can be neglected. This is
also the case of the damping forces, as long as the damping is small. In such a case, the equations
become

[Mcc) {ac”} + [Cecl {ac’} + [Kecl {ac} = — [Te)" [K] [T {ar} (6.23)

where now the forcing vector is only a function of the imposed displacements. With this formulation,
a state-space model can be built using the approach detailed in section , where normal modes
of the system with the imposed dofs set to 0 and a static correction to — [T¢]” [K][T7] is added.
The displacement at the imposed dofs can be directly recovered using the [d] matrix if a sensor is
defined at these location, using matrix [T7];.

Note that in (6.23]), there are as many inputs as there are degrees of freedom in {g;}. This can be
simplified to a single input using an expansion vector such that:

{ar} ={L}a (6.24)

where ¢q is now a single input scalar displacement to the system, and the right-hand-side of equation
(6.23]) reduces to a single vector multiplied by the input displacement gg. The number of necessary
static responses to build the state-space model is therefore also reduced to one instead of the number
of degrees of freedom in {qs}.

The construction of a state-space model with imposed displacement is illustrated below on the same
example of the concrete tower. The function fe2ss is used to build directly the I/O state-space
model from the finite element after defining properly the input (horizontal imposed displacement
Uimp) and the output (displacement at the top of the tower d — top).

In d_piezo(’TutoPzTowerSSUimp-s1’) , the mesh is built and a horizontal displacement is imposed
at the basis of the tower.

Then in d_piezo(’TutoPzTowerSSUimp-s2’) , the transfer function between Uimp and d — top is
computed using low-level calls using only the stiffness term in the excitation term, or both the stiff-
ness and mass terms.

%% Step 2 : Reference method - exact solution + Inertial term neglected - full model
% Build matrices
[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;
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% Full model

KO = feutilb(’tkt’,Case.T,model.K); 7 Assemble matrices taking into account BCs
F1 = -Case.T’*model.K{2}*Case.TIn; 7 Loading due to imposed displacement
F2 = -Case.T’*model.K{1}*Case.TIn; 7 Inertial term

b

% compute response in freq domain

w=linspace(0,100,512);

for i=1:length(w)
U0(:,i)=Case.T*((KO{2}*(1+0.02x1i)-w (i) "2¥KO{1})\ (F1-w(i) "2%F2));
% Take into account mass term
U1(:,i)=Case.T*((KO{2}*(1+0.02*1i)-w(i) "2#KO{1})\F1); % Stiffness term only

end

CTA = fe_c(model.DOF,21.01); u0 = CTA*UO; ul = CTA*U1;

% Change output format to be compatible with iicom
Cl=d_piezo(’BuildC1’,w’/(2%pi),u0.’,’d-top’,’Uimp’); Cl.name=’M and K’;
C2=d_piezo(’BuildC1’,w’/(2%pi),ul.’,’d-top’,’Uimp’); C2.name=’K only’;
ci=iiplot;iicom(ci,’Curveinit’,{’curve’,Cl.name,Cl;’curve’,CQ.name,C2});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure shows that the two curves match perfectly, meaning that the inertial term can indeed
be neglected for the excitation, allowing to build an accurate modal state-space model with a static
correction with the stiffness term only.

This is the approach used in SDT and illustrated in d_piezo(’TutoPzTowerSSUimp-s3’)
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Figure 6.5: Transfer function between horizontal displacement at the bottom/top of the beam using
the full model, the loading takes into account both the mass and stiffness terms, or only the stiffness

term (diop/Uimp)

%% Step 3 : State-space model using SDT (reduced)

sys=fe2ss(’free 5 5 0 -dterm’,model);
C3=qgbode(sys,w, ’struct-lab’) ;C3.name=’fe2ss-5md+st’; C3.X{2}={’d-top’};
ci=iiplot;iicom(ci,’curveinit’,{’curve’,Cl.name,Cl;’curve’,CB.name,CB});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure compares the frequency response functions used with the full model and direct compu-
tation, and using a state-space model with 5 modes and a static correction for the stiffness loading
term. The match between the two is excellent.
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Figure 6.6: Transfer function between horizontal displacement at the bottom/top of the beam using
the full model and the reduced state-space model with 5 modes, the loading takes into account only

the stiffness term (dyop/Uimp)

6.3.2 State-space models with imposed acceleration

In the case of imposed acceleration, it is common to write the problem in terms of relative displace-
ments with respect to the base motion, in which case matrix [T7] is not anymore limited to the
imposed displacements. The approach consists in choosing [T7] as the static response to imposed
displacements, so that it relates to all dofs in the structure. Let us assume that the dofs of the
structure are rearranged so that the matrices can be decomposed in four blocks as previously :

] = { gggj] [[[fgéi]] } (6.25)

where the index I corresponds to the imposed dofs. [T7] is then given by the static expansion of
the imposed displacements:

I
[T7] = [ —[Keo] "t [Ker] } {ao} (6.26)

where {qo} represents the spatial shape of the imposed acceleration at the specific locations. Such a
representation is general enough to take into account base excitation problems where the excitation
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of the base is uniform and in a single direction, such as a uniform translation of the base. In this
case, [T7] represents the rigid body translation of the structure in the direction of the base motion,
and {gc} is the relative motion of the structure with respect to the translation of the base. The
general approach allows also to impose a combination of the six rigid-body modes of the structure.
In this case, the quantity that is withdrawn from the global motion in order to represent the relative
motion is different at each location in the structure in the case where rotational rigid body motions
are present in the base excitation.

Lastly, the approach also allows to take into account base excitations which induce a deformation
of the basis, in which case [T7] is not a rigid body motion but the static expansion of the imposed
displacements on all other dofs of the structure (which reduces to rigid body motions if the imposed
displacement is a translation and/or rotation of the base).

With this type of decomposition, in the case where [T7] is a linear combination of rigid-body motions,
the equations of motion ([6.21]) reduce to:

[Mcc) {ac”} + [Cecl {at} + [Kecl{ac} = — [Te)" [M][T7] {qf (6.27)

because [T7] {qr} represents a combination of rigid body modes so that [K] [T7] {gr} = 0. For damp-
ing models where the damping matrix is proportional to stiffness, the damping term is also equal to
zero, otherwise it can be neglected when damping is small.

When [T7] is not a combination of rigid body modes (i.e. when the imposed acceleration induces
deformation of the base), the stiffness term is given by

I
— Koo)' [Ker

so that it is also zero (see also in [5]).

With this simplification, it is possible to build a reduced state-space model where the force vector is
related to the inertial term and the imposed acceleration only. Note however that in this case, the
state-space model solves for relative displacements, and that it is not straightforward to obtain the
absolute displacements (if needed), as it would require to know the base displacement, and here it is
the acceleration that is imposed (so one cannot use the [d] matrix here to add the base displacement).

7" [K) ] tan = (- e fee) Ko + (Ke) (=0 (629

A possible approach is to solve for the absolute displacements by modifying the mass, stiffness and

damping matrices as:
- I 0
{M} - [ 0 (Mol ] (6.29)

[K] — [ 8 [K(;o] (6.30)
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[C‘] - [ 8 [C(;C] ] (6.31)
and the displacement and forcing vectors as
{q} = { ;]é } (6.32)
{ /!
= iy | (0:3)

where {qjj} is the vector of imposed accelerations.

A state-space representation can be built by projecting these equations in the subspace of the
constrained modeshapes which are the solution of

(—w? [Mcc] + [Kecl]) {65} = {0} (6.34)

The reduced basis (keeping NR modes) noted [TC} is given by :

{TC} = [¢1..~R] (6.35)
so that
{act = [TC} {dc} (6.36)
which leads to the reduced matrices (with mass normalized modeshapes)
{MEC] = [TC}T [Mcc] [TC} =1, [KACC} = [TC}T [Kccl [TC] = {\Wf\: (6.37)
The state-space representation is then given by:
ar [0] 1] ar
ac | _ 0 0 ac
O wn ) e e )]
0 0
: ; { “ } (6.38)
s ] m
qu
b= [elm) e[e] 0 o] { € hr{ e}
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1T
With this choice of [T, the submatrix — [T (;} [K][T1] = 0 and the states are fully decoupled. The

method can be used with the alternative representation where 77 is taken as the matrix limited to
the imposed displacement (as for the imposed displacement formulation, in which case the subma-

1T
trix — Tc] [K][T7] is non-zero and remains in the left-hand-side because {q;} is unknown. The

disadvantage of this formulation is the fact that the state-variables remain coupled in the modal
domain, and that it is necessary to augment the modal basis with static responses to [M] [T7] {q]}

The general method implemented in SDT to build state-space models with imposed displacements
corresponds to the second case where the states remain coupled, it requires the combination of the
use of fe_reduc and nor2ss function and cannot be performed directly with fe2ss. An illustration
is given in the script below.

In d_piezo(’TutoPzTowerSSAimp-si’) , the model is built and the actuator and sensors are defined.

The in d_piezo(’TutoPzTowerSSAimp-s2’) , the first calculation is explicit and performed in the
frequency domain, with low level calss. The problem is solved using relative displacements.

%% Step 2 : Regular method with RHS M*Tin (relative displacement)
fp ———————— full model
[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;

KO = feutilb(’tkt’,Case.T,model.K); 7 Assemble matrices taking into account BCs
% Compute TIn as static response to imposed displacement

TIn=fe_simul (’static’,model); TIn=TIn.def;

% Loading due to imposed acceleration

F = -Case.T’*model.K{1}*TIn;

% compute response in freq domain (relative displacement)
w=linspace(1,100,512);
for i=1:length(w)
UOr (: ,i)=Case.T*((KO{2}* (1+0.02%11)-w(i) “2¥KO{1})\F);
end
Uimp=1./(-w."2); 7% Imposed displacement for a unit imposed acceleration

% Absolute displacement

for i=1:length(w)
U0(:,1)=U0r(:,i)+Uimp(i)*TIn;
end
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CTA = fe_c(model.DOF,21.01); u0 = CTA*UO; uOr = CTA*UOr;

% Change output format to be compatible with iicom
CO=d_piezo(’BuildC1’,w’/(2%pi),u0.’,’d-top’,’Aimp’); CO.name=’Full’;
Cl=d_piezo(’BuildC1’,w’/(2%pi) ,ulr.’,’dr-top’,’Aimp’); Cl.name=’Full’;

In d_piezo(’TutoPzTowerSSAimp-s3’) , we build a state-space model with fe2ss using the ade-
quate load based on imposed accelerations. The output of the state-space model is then a relative
displacement.

%% Step 3 - State-space with SDT(relative) using a DofLoad
model2=d_piezo(’Meshtower’);

model2=fe_case(model2, ’FixDof’,’Clamped’,[1.01 1.06]); % Block all interface dofs
model2=fe_case(model2, ’Remove’,’F-top’); 7% Remove point force

[model2,Case2] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model2) ;

% Load when using relative displacements
SET.DOF=model2.DOF; SET.def=Case2.Tx*F;
model2=fe_case(model2, ’DofLoad’,’Aimp’ ,SET); %

% state-space model
sysr=fe2ss(’free 5 5 0 -dterm’ ,model2);

Figure shows the comparison between the response (dytop/Aimp) of the full model computed in
the frequency domain, and of the reduced state-space model using 5 modes and a static correction
to the applied load (built from the acceleration and mass matrix).
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Figure 6.7: comparison between the response (relative displacement at the top of the tower divided
by imposed acceleration) of the full model computed in the frequency domain, and of the reduced
state-space model using 5 modes and a static correction (dytop/Aimp)

In d_piezo(’TutoPzTowerSSAimp-s4’) , the approach used in SDT to build a state-space model
allowing to obtain directly the absolute displacement is illustrated.

%% Step 4 : state-space model for absolute displacements - Aimp

% This is a CB basis which is renormalized (so free BCs and rigid body mode)
% TR2.data is needed for nor2ss hence the normalization.

TR2 = fe2ss(’craigbampton 5 5 -basis’,model);

sysu= nor2ss(TR2,model) ;

Figure shows that the state-space model obtained with this approach in SDT gives a response
very close to the full model computed in the frequency domain.
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Figure 6.8: Transfer function between horizontal acceleration at the bottom and the absolute dis-
placement at the top of the beam and the imposed horizontal acceleration at the bottom - comparison
of the full model (freq domain computation) and the reduced state-space model with 5 modes and
static correction (diop/Aimp)

6.3.3 Model reduction and state-space models for piezoelectric structures

When building reduced or state-space models to allow faster simulation, the validity of the reduction
is based on assumptions on bandwidth, which drive modal truncation, and considered loads which
lead to static correction vectors.

Modes of interest are associated with boundary conditions in the absence of excitation. When using
piezoelectric actuators driven in voltage mode, for the electric part, these are given by potential set
to zero (grounded or shorted electrodes) and enforced by actuators (defined as DofSet in SDT in
the case of voltage actuators) which in the absence of excitation is the same as shorting.

Excitation can be mechanical {F,ccp}, charge on free electric potential DOF {Q};, and imposed
voltage {V'} . One thus seeks to solve a problem of the form

{ Zéqv(j) gévv } { v } = { Fg,j }— [ 5;31 ] {Vin} (6.39)
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The imposed voltage {V'},, is enforced using a DofSet in SDT and is therefore analogous to an
imposed displacement. The general form of the loads given above can be simplified due to the fact
that there are no coupling terms in the mass matrix between the mechanical and electrical DOF's for
full models of piezoelectric structures (see (4.6])), and the fact that the capacitance matrix [Kyv] is
diagonal. The problem is then reduced to

= — |V, 6.40
[ Zvq Zvv Vv Qrn 0 Vi (6.40)
Using the classical modal synthesis approach (implemented as fe2ss(’free’)), one builds a Ritz

basis combining modes with grounded electrodes (V7, = 0), static responses to mechanical and
charge loads and static response to enforced potential:

q ¢q —1 Fmech } -1 |:KqV1n :| Gmode
Z(0 Z(0
V = ¢V ( ) { an ( ) 0 qstat (641)
Vin 0 0 I Vin

In this basis, one notes that the static response associated with enforced potential V7, does not verify
the boundary condition of interest for the state-space model where V7, = 0. Since it is desirable
to retain the modes with this boundary condition as the first vectors of basis and to include
static correction as additional vectors, the strategy used here is to rewrite reduction as

d)q -1 Finech valn 0
{a} = || ov Z(0) [an 0 } {agr}+4 O (6.42)
0 0 Vin

where the response associated with reduced DOFs qgr verifies Vj, = 0 and the total response is
found by adding the enforced potential on the voltage DOF only. The presence of this contribution
corresponds to a d term in state-space models. The usual SDT default is to include it as a residual
vector as shown in , but to retain the shorted boundary conditions, form is prefered.
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6.3.4 Example of a cantilever beam with 4 piezoelectric patches

The example of the cantilever beam with 4 piezoelectric transducers detailed in section [£.6.2] is con-
sidered again. A state-space model is built using the first 10 modes and static corrections discussed
above, and the dynamic response is compared to the full-model response.

In d_piezo(’TutoPzPlatedpztSS-si’) , the model is built and the actuators and sensors defined.

Then in d_piezo(’TutoPzPlatedpztSS-s2’) , the transfer functions between 'V-Act’, defined on
the first piezoelectric patch, and , ’Q-Act’, ’QS1-3’, defined as charge sensors on patches 1 to 4, as
well as "Tip’ (tip displacement) are computed using the full model with fesimul and the reduced
state-space model built with fe2ss.

Figures [6.9] and show that there is an excellent match between the responses computed with
the full model and the state-space model with 10 modes and static corrections.
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Figure 6.9: Open-loop transfer function between V-Act and tip displacement (left), Q-Act sensor
(right), comparison between, full model and reduced state-space model (10 modes + static corrections
- dterm)
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Figure 6.10: Open-loop transfer function between V-Act and Q-S1 sensor (top-left),Q-S2 sensor

(top-right), Q-S3 sensor (bottom), comparison between, full model and reduced state-space model
(10 modes + static corrections - dterm)

In the next script, we illustrate the use of sensors and actuators combinations.

In d_piezo(’TutoPzPlate4pztSSComb-s1’) , we build the mesh and define actuator combinations:
the first and second patch are actuated together with an opposite voltage to induce pure bending,
and the static response is computed (Figure |6.11)).

Then in d_piezo(’TutoPzPlatedpztSSComb-s2’) , we define two sensors, consisting in charge com-
bination with opposite signs for nodes 1057 and 1058 and voltage combination with opposite signs
for the same nodes (Figure shows the case of charge combination).



126 CHAPTER 6. MODEL REDUCTION AND 1/0O STATE-SPACE MODELS

Plate_4pzt Comb_static
V1+2 (0 Hz)

¥Ex

Figure 6.11: Static deflection due to combination of actuators to induce pure bending
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Figure 6.12: Example of combination of charge sensors and voltage actuators to measure bending
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%% Step 2 - Define sensor combinations

% Combined charge output (SC electrodes) % difference of charge 1684-1685
ri=struct(’cta’,[1 -1],’DOF’,edofs(3:4),’name’,’QS3+4’);
model=p_piezo(’ElectrodeSens(Q’ ,model,rl);

% Combined voltage output (0OC electrodes) % difference of voltage 1684-1685
rl=struct(’cta’,[1 -1],’DOF’ ,edofs(3:4),’name’,’VS3+4’);
model=fe_case(model,’SensDof’,rl.name,rl);

model=fe_case(model, ’pcond’,’Piezo’,’d_piezo(’’Pcond 1e877)’);

By default, the electrodes are in 'open-circuit’ condition for sensors, except if the sensor is also used
as voltage actuator which corresponds to a ’short-circuit’ condition. Therefore, as the voltage is left
"free’ on nodes 1057 and 1058, the charge is zero and the combination will also be zero. If we wish
to use the patches as charge sensors, we need to short-circuit the electrodes, which will result in a
zero voltage and in a measurable charge.

This is illustrated in d_piezo(’TutoPzPlate4pztSSComb-s3’) by computing the response in both
configurations (open-circuit by default, and short-circuiting the electrodes for nodes 1057 and 1058):

The FRF for the combination of charge sensors is not exactly zero but has a negligible value in the
‘open-circuit’ condition, while the voltage combination is equal to zero in the ’short-circuit’ condi-
tion. Charge sensing in the short-circuit condition and voltage sensing in the open-circuit condition
are compared by scaling the two FRFs to the static response (f = 0Hz) and the result is shown
on Figure The FRFs are very similar but the eigenfrequencies are slightly lower in the case of
charge sensing. This is due to the well-known fact that open-circuit always leads to a stiffening of
the piezoelectric material. The effect on the natural frequency is however not very strong due to the
small size of the piezoelectric patches with respect to the full plate.

The stiffening effect due to the presence of an electric field in the piezoelectric material when the
electrodes are in the open-circuit condition is a consequence of the piezoelectric coupling. One can
look at the level of this piezoelectric coupling by comparing the modal frequencies with the electrodes
in open and short-circuit conditions.

This is done in d_piezo(’TutoPzPlatedpztSSComb-s57)

%% Step 5 - Compute OC and SC frequencies
model=d_piezo(’MeshULBplate -cantilever’);

% Open circuit : do nothing on electrodes
di=fe_eig(model, [5 20 1e3]);

% Short circuit : fix all electric DOFs
DOF=p_piezo(’electrodeDOF.*’ ,model) ;
d2=fe_eig(fe_case(model, ’FixDof’,’SC’,DOF),[5 20 1e3]);
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Figure 6.13: Comparison of FRFs (scaled to the static response) for voltage (green) and charge
(blue) sensing. Zoom on the third eigenfrequency (right)

ri=[dl.data(l:end)./d2.data(l:end)];
gf=figure;plot(rl,’*’,’linewidth’,2);axis tight; set(gca,’Fontsize’,15)
xlabel(’Mode number’);ylabel(’f_{0C}/f_{SC}’);

Figure shows the ratio of the eigenfrequencies in the open-circuit vs short-circuited conditions.
The difference depends on the mode number but is always lower than 1%. Higher stiffening effects
occur when more of the strain energy is contained in the piezoelectric elements, and the coupling
factor is higher.
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Figure 6.14: Ratio of the natural frequencies of modes 1 to 20 in open-circuit vs short-circuit
conditions illustrating the stiffening of the piezoelectric material in the open-circuit condition

6.4 State-space models and Craig-Bampton model reduction

For coupled problems linked to model substructuring, it is traditional to state the problem in terms
of imposed displacements rather than loads. Assuming that the imposed displacements correspond
to DOFs, one seeks solutions of problems of the form

Z11 ZIC]{QI} {RI}
= 6.43
[ Zcr Zec qc 0 (6.43)
where the displacement ¢; are given and the reaction forces R; are non-zero. The exact response
to an imposed harmonic displacement ¢ is given by

@=| i, | (6.4

The first level of approximation is to use a quasistatic evaluation of this response , that is to use
Z(0) = [K]. Model reduction on this basis is known as static or Guyan condensation [0].

This reduction does not fulfill the requirement of validity over a given frequency range. Craig and
Bampton [7] thus complemented the static reduction basis by fixed interface modes : normal
modes of the structure with the imposed boundary condition q;f = 0. These modes correspond to
singularities in Z¢c ¢ so their inclusion in the reduction basis allows a direct control of the range over
which the reduced model gives a good approximation of the dynamic response.

The Craig-Bampton reduction basis takes the special form

{ gé }: [ —KgéKCI ¢OC {ar} (6.45)
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where the fact that the additional fixed interface modes have zero components on the interface
DOFs is very useful to allow direct coupling of various component models. fe reduc provides a
solver that directly computes the Craig-Bampton reduction basis.

A major reason of the popularity of the Craig-Bampton (CB) reduction basis is the fact that the
interface DOF's gy appear explicitly in the generalized DOF vector ¢gr, and is a major reason why
the use of Craig-Bampton reduction methods is very popular in the industry.

The major finite elements software such as Nastran, Abaqus or Ansys all propose a CB reduction.
In the industry, it is a common practice to share models via CB reduced matrices, therefore keeping
the details of the geometry and material properties confidential. Generally, the degrees of freedom
which are kept in the model are the essential ones, i.e. the ones where forces are applied, or where
the magnitude of displacement, velocity or acceleration needs to be assessed, as well as interface
degrees of freedom if the structure needs to be coupled to one or several others. The question we
address in the next section is how to build an accurate state-space model based on these reduced
matrices only.

6.4.1 State-space models with imposed displacements using CB matrices

As detailed in section , when dealing with a full FE model, the imposed displacement can be
replaced by a force equal to — [T¢| [K] [T7] {qr}, neglecting the term related to acceleration. It turns
out that this assumption is not valid after a CB reduction.

It can be easily understood if we consider that only the imposed degrees of freedom are retained in
the CB basis. In that case, [T¢] [K][T7] = [Kc1] which, according to is equal to zero, would
result in no load applied to the system. In this specific case, the inertial term is the most important
one, while the stiffness term is zero, hence it is not possible to build a state-space model based on
the standard approach presented before.

In d_piezo(’TutoPzTowerSSUimpCB-s1’) , we use low level calls to make an explicit computation
of the response after CB reduction, using either the inertia, the stiffness of both terms for the loading.

% See full example as MATLAB code in d_piezo(’ScriptTutoPzTowerSSUimpCB’)
d_piezo(’DefineStyles’);

%% Step 1 : Build Model, CB reduction, explicit response
model=d_piezo(’meshtower’);

model=fe_case(model, FixDof’,’Clamped’, [1.06]); 7 Leave x free for imposed displ
model=fe_case(model, ’Remove’,’F-top’); ’ Remove point force
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model=fe_case(model, ’DOFSet’, ’Ulmp’, [1.01]); % Set imposed displ

%Full model matrices
[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;
KO = feutilb(’tkt’,Case.T,model.K); % Full-model

% CB matrices and T matrix
CB = fe_reduc(’craigbampton 5 5’,model); TR = CB.TR; KCB=CB.K;

% Build loads full and reduced models
F = -Case.T’#*model.K{2}*Case.TIn;
F1=-CB.K{2}(2:end,1);
F2=-CB.K{1}(2:end,1);

w=linspace(1,100,512);

for i=1:length(w)
UO(:,i)=Case.T*((KO{Q}*(1+0.02*1i)—w(i)”2*KO{1})\F); % full model
Ulr(:,1)=((KCB{2}(2:end,2:end)*(1+0.02*1i)-w(i) "2*KCB{1}(2:end,2:end))
\(F1-w(i)"2%F2)); % CB stiffness and inertia
U2r(:,1)=((KCB{2}(2:end,2:end) *(1+0.02*1i)-w(i) "2*KCB{1}(2:end,2:end))
\(F1)); 7 CB stiffness

U3r(:,1)=((KCB{2}(2:end,2:end)*(1+0.02%1i)-w(i) "2+xKCB{1}(2:end,2:end)) . ..

\(-w(i)~"2%F2)); %CB inertia
end

CTA = fe_c(model.DOF,21.01); u0 = CTA*UO;

U1=TR.def*[ones(1,length(w)); Ulr]; ul = CTAxU1;
U2=TR.def*[ones(1,length(w)); U2r]; u2 = CTA*U2;
U3=TR.def*[ones(1l,length(w)); U3r]; u3 = CTA*U3;

% Change output format to be compatible with iicom

Cl=d_piezo(’BuildC1’,w’/(2%pi),u0.’,’d-top’,’Uimp’); Cl.name=’full model’;
C2=d_piezo(’BuildC1’,w’/(2%pi),ul.’,’d-top’,’Uimp’); C2.name=’CB K and M’;

C3=d_piezo(’BuildC1’,w’/(2%pi),u2.’,’d-top’,’Uimp’); C3.name=’CB K’;
C4=d_piezo(’BuildC1’,w’/(2%pi),u3.’,’d-top’, ’Uimp’); C4.name=’CB M’;
ci=iiplot;iicom(ci,’curveinit’,{’curve’,Cl.name,Cl;’curve’,C2.name,C2;
’curve’,CS.name,CS;’curve’,C4.name,C4});

iicom(’submagpha’)

131



132 CHAPTER 6. MODEL REDUCTION AND 1/O STATE-SPACE MODELS
d_piezo(’setstyle’,ci);
Figure [6.15] illustrates clearly the fact that the forcing term related to acceleration is the most im-

portant one to represent the response.
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Figure 6.15: Transfer function between horizontal displacement at the bottom and the absolute
displacement at the top of the beam

In practice however, the DOF's retained with Craig-Bampton are not limited to the imposed dis-
placements. As an illustrative example, we consider that the translation DOF at the top of the

tower is also kept in the CB reduction.

In d_piezo(’TutoPzTowerSSUimpCB-s2’) , based on these reduced matrices, a state-space model is
built with fe2ss and the response is compared to the full model.

%% Step 2: keep bottom and top translation in the CB basis
% Ss from full model - 5 modes + static

sysO=fe2ss(’free 5 5 0 -dterm’ ,model);
CO=qgbode (sys0,w, ’struct-lab’) ;CO.name="fe2ss’; CO.X{2}={’d-top’}
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% Top and bottom DOF to be kept in CB reduction
SET.DOF=[1.01; 21.01]; SET.def=eye(2);
model=fe_case(model, ’DOFSet’, ’Ulmp’,SET);

% Build CB reduced model

model = stack_set(model,’info’,’EigOpt’,[56 5 0]);

SE1l= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 ’,model); %

% To keep only the matrices

SE1 = rmfield(SE1,{’il’,’pl’,’Stack’,’TR’,’mdof’}) ;
SE1.Node=feutil(’getnode’,SE1,unique(fix(SE1.DOF)));SE1.E1t=[];

% Define input/output
SEl=fe_case(SEl, ’SensD0OF’,’d-top’,21.01);
SEl=fe_case(SE1,’DOFSet’, ’UImp’,[1.011); %

% Build state-space based on CB reduced model
sys=fe2ss(’free 5 5 0 -dterm’,SE1);

Figure [6.16] shows that using fe2ss after a CB reduction leads to a very bad reduced state-space
representation of the dynamics of the beam with imposed displacement.
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Figure 6.16: Transfer function between horizontal displacement at the bottom and the absolute
displacement at the top of the beam

An alternative is to use a transformation of the CB mass and stiffness matrices in order to come
back to a situation where the inertial term in the excitation is zero, and only the stiffness term is
non-zero, so that fe2ss can be applied to build the state-space model. The transformation is applied
so that the retained DOF's are untouched (so that they represent physical DOFs and can be used to
simply apply force and measure output quantities), as proposed in [§]. Raze’s transform takes the
form:

{dc} = — [Mcc) ™ [Mer) {ar} + {ac} (6.46)
Therefore the matrices can be transformed with the following projection matrix
= I 0
T} = - 6.47
[ [ — [Mcc) ™ [Meq] T ] (6.47)

It is straightforward to show that after applying the transformation, matrix [MC [] = 0 (hence the

option name nolMCI in[fe reduc|), so that now only the stiffness term appears in the excitation term.
After transforming the matrices, can be used to build an accurate reduced state-space model.
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In In d_piezo(’TutoPzTowerSSUimpCB-s3’) , we first perform the transformation manually with
low-level calls and replace the matrices in the reduced model, then use fe reduc(’CraigBampton
-noMCI’) for a direct application.

%% Step 3 : Apply Raze transform before making the state-space model

% Transform the initial CB matrices

KCB=SE1.K;

N=size (KCB{1},1);

Ti=[ eye(2) zeros(2,N-2) ; - KCB{1}(3:end,3:end)\KCB{1}(3:end,1:2) eye(N-2)];

Mr=T1’*(KCB{1})*T1;
Kr=T1’* (KCB{2})*T1;

% Replace matrices in the CB model
SE2=8E1;

SE2.K{1}=Mr;

SE2.K{2}=Kr;

sys2=fe2ss(’free 5 5 0 -dterm’,SE2);

% Make CB matrices with Raze’s transform directly -noMCI
SE3= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 -nolMCI’,model);

% To keep only the matrices
SE3 = rmfield(SE3,{’il’,’pl’,’Stack’,’TR’,’mdof’}) ;
SE3.Node=feutil (’getnode’,SE3,unique (fix(SE3.DOF)));SE3.Elt=[];

% Define input/output
SE3=fe_case(SE3, ’SensDOF’, ’d-top’,21.01);
SE3=fe_case(SE3, ’DOFSet’, ’Ulmp’, [1.011); %

% Build state-space based on CB reduced model
sys3=fe2ss(’free 5 5 0 -dterm’,SE3);

Figure shows that using fe2ss after a CB and Raze’s transformation given by (6.47) leads to
an accurate model in the frequency band of interest
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Figure 6.17: Transfer function between horizontal displacement at the bottom and the absolute
displacement at the top of the beam

6.4.2 State-space models with imposed accelerations

The case of imposed acceleration is much simpler to treat as fe2ss can be used directly after CB
reduction in the case of relative displacement. If one is interested in absolute displacement, nor2ss
can be applied after computing the modeshapes based on the reduced CB matrices and having or-
thonormalized them. The first script illustrates the construction of a state-space model for relative
displacement, using fe2ss and the definition of an equivalent load.

In d_piezo(’TutoPzTowerSSAimpCB-s1’) , the reference solution is computed using explicit com-
putations with low-level calls.

Then in d_piezo(’TutoPzTowerSSAimpCB-s2’) , a CB reduction is performed keeping the displace-
ment in the z-direction for the nodes at the bottom and at the top of the tower and 5 modes.
%% Step 1: reference solution -direct computation

% Build model
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model=d_piezo(’meshtower’);

model=fe_case(model, ’FixDof’,’Clamped’, [1.06]);

% Leave x free for imposed displ

model=fe_case(model, ’Remove’,’F-top’); ' Remove point force

% Initial matrices without imposed displacements
[model0,Case0] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;
KO = feutilb(’tkt’,Case0.T,model0.K); % Full-model 41x41

% Matrices with Block displ at basis
model=fe_case(model, ’DOFSet’, ’Ulmp’,[1.01]1); %

% Full model matrices
[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;
Kcc = feutilb(’tkt’,Case.T,model.K); % Blocked at basis 40x40

% Put manually unitary values to be exact
TIn=zeros(40,1); TIn(1:2:end)=1;

% The load is built after applying the boundary condition to the matrices.

F = -(Kcc{1}*TIn);

w=linspace(0,100,512);
eta=0.02;

% Reference solution - full model

for i=1:length(w)
U0(:,i)=Case.T*((Kcc{2}*(1+etax1i)-w(i) "2*Kcc{1})\F);

end

CTA = fe_c(model.DOF,21.01); u0 = CTAxUO;
% Change output format to be compatible with iicom
CO0=d_piezo(’BuildC1’,w’/(2%pi),u0.’,’dr-top’,’Aimp’); CO.name=’Full’;

%% Step 2 : state-space model based on CB reduction
% CB reduction on two DOFs

SET.DOF=[1.01; 21.01]; SET.def=eye(2);
model=fe_case(model, ’DOFSet’,’Ulmp’,SET);

137
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% Build CB reduced model
model = stack_set(model,’info’,’EigOpt’,[5 5 0]); % No mass shift!
SEl= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 -bset ’,model); %

SEO=SE1l; % Save superelement model

% To keep only the matrices
SE1 = rmfield(SE1,{’il’,’pl’,’Stack’,’TR’,’mdof’}) ;
SE1.Node=feutil (’getnode’,SE1,unique(fix(SE1.DOF)));SE1.Elt=[];

% Force vector using CB matrices

KCB=SE1l.K;

TInCB= [1; -KCB{2}(2:end,2:end)\KCB{2}(2:end,1)];
FCB= -KCB{1}*TInCB; 7 From CB matrices only

% Block 1.01 and define a DofLoad and a new observation matrix instead
SEl=fe_case(SE1, ’FixDOF’,’BC’,1.01); % BC for relative displacement
SET.DOF=SE1.DOF(2:end); SET.def= FCB(2:end);

SEl=fe_case(SEl, ’D0FLoad’,’UImp’,SET); % Equivalent load
SEl=fe_case(SE1l, ’SensDOF’, ’Output’,SET.DOF(1));

sys=fe2ss(’free 5 5 0 -dterm’,SE1);

Figure shows that using with applied load leads to an accurate model in the frequency
band of interest
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Figure 6.18: Transfer function between horizontal acceleration at the bottom and the relative dis-
placement at the top of the beam

In d_piezo(’TutoPzTowerSSAimpCB-s3’) , the state-space model with an output in absolute dis-
placements is built using nor2ss and the response iscompared to the reference solution.

%% Step 3: State-space model with absolute displacement

SE2=SEO; 7 Initial model without BCs
TR2=fe_eig(SE2,[5 7 0]); 7 Compute all7 modes of reduced model

% Imposed acceleration at base
SET.DOF=[1.01]; SET.def=eye(1); 7
SE2=fe_case(SE2, ’DOFSet’,’UImp’,SET); % Impose acc at bottom

% build state-space model with nor2ss
sys2= nor2ss(TR2,S8E2) ;

Figure shows that using nor2ss with imposed acceleration leads to an accurate model in the

frequency band of interest
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Figure 6.19: Transfer function between horizontal acceleration at the bottom and the absolute
displacement at the top of the beam

6.4.3 State-space models with imposed voltage (piezoelectric actuators)

We are considering again the aluminum plate with 4 piezoelectric patches shown in Figure [£.19 and
with the material properties in Table In d_piezo(’TutoPzPlatedpztSSCB-s1’) , a reference
state-space model is first built with fe2ss using 5 modes in the reduced basis and the static correc-
tion linked to the voltage actuator.

In d_piezo(’TutoPzPlatedpztSSCB-s2’) , a Craig-Bampton model reduction is performed choos-
ing the 4 electrical DOFs corresponding to each patch and the displacement sensor at the tip of the
beam as reference DOF's. The reduced matrices are used to build a super-element, and the response
is computed as for the reference using directly fe2ss.

Figure shows the errors introduced due to the fact that there is a mass coupling term after CB.

%% Step 2 - CB reduction
model=fe_case(model,’DOFSet’,’In’, [nd+.03; il1+.21]1); %
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% Build CB matrices

model = stack_set(model,’info’,’Eiglpt’,[5 10 0]);

SEl= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 -bset’,model); %
% To keep only the matrices

SE1 = rmfield(SE1,{’il’,’pl’,’Stack’,’TR’}) ;

SE1.Node=feutil (’getnode’,SE1,unique(fix(SE1.DOF)));SE1.Elt=[];

% Define node names
SEl=sdth.urn(’nmap.Node.set’,SE1,
{>Tip’,nd; Act’,i1(1);’S1°,i1(2);°827,11(3);’837,i1(4)});

% Define input/output

SEl=fe_case(SE1l, ’SensDof’,’Sensors’,scell);
SEl=fe_case(SE1l,’DofSet’,’In’,rmfield(dIn, ’E1t’)); % Elt defined for display
SEl=stack_set(SEl,’info’,’DefaultZeta’,le-2);

% Build state-space model based on reduced CB matrices
sl=fe2ss(’free 5 10 0 -dterm’,SE1);
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Figure 6.20: Tip displacement and charges on the 4 patches due to voltage actuator on patch 1.
The reference solution is computed with a direct modal reduction (10 modes) with static correction,
while the second curve represents the response after using CB reduction (10 modes + 5 retained
DOFSs) before building the state-space model. The second curve is wrong due to the coupling in the
mass matrix introduced by the CB reduction
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In In d_piezo(’TutoPzPlatedpztSSCB-s3’) , we use Raze’s transform to remove the coupling terms
in the mass matrix (-noMCI option in fe reduc).

Figure [6.21] shows the result when making the transform to remove mass coupling term after CB.
The match with the referene solution is excellent.

%% Step 3: Now with Raze’s transform, using -noMCI option in fe_reduc

SE2= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 -noMCI’,model); % Removes M-coupling
% To keep only the matrices

SE2 = rmfield(SE2,{’il’,’pl’,’Stack’,’TR’}) ;
SE2.Node=feutil(’getnode’,SE2,unique (fix(SE2.D0OF))) ;SE2.E1t=[];

%Define node names

SE2=sdth.urn(’nmap.Node.set’,SE2,
{’Tip’,nd;’Act’,il(l);’Sl’,11(2);’SQ’,il(S);’SS’,il(4)});

% Define input/output

SE2=fe_case(SE2, ’SensDof’, ’Sensors’,scell) ;

SE2=fe_case(SE2, ’DofSet’,’In’,rmfield(dIn, ’E1t’)); % Elt defined for display

SE2=stack_set(SE2,’info’,’DefaultZeta’,le-2);

% Build state-space model based on reduced CB matrices
s2=fe2ss(’free 5 10 0 -dterm’,SE2);
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Figure 6.21: Tip displacement and charge on patches due to voltage actuator on patch 1.
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reference solution is computed with a direct modal reduction (10 modes) with static correction,
while the second curve represents the response after using CB reduction and Raze’s transform (10
modes + 5 retained DOFs) before building the state-space model. There is an excellent match
between the two curves
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7.1 Working principle of piezocomposite transducers

PZT ceramics are commonly used due to their good actuation capability and very wide bandwidth.
The major drawbacks of these ceramics are their brittle nature, and the fact that they cannot be
easily attached to curved structures. In order to overcome these drawbacks, several packaged PZT
composites have appeared on the market. A typical piezocomposite transducer is made of an active
layer sandwiched between two soft thin encapsulating layers (Figure .

Electrode
layers

Piezoelectric Matrix epoxy

Figure 7.1: General layout of a piezoelectric composite transducer

The packaging plays two different roles : (i) applying prestress to the active layer in order to avoid
cracks, and (ii) bringing the electric field to the active layer through the use of a specific surface
electrode pattern. Due to the difficulty to ensure contact between cylindrical fibers and the elec-
trodes, rectangular fibers have been developed, leading to the 'Macro Fiber Composite’ transducers
initially developed by the NASA [9] and currently manufactured by the company Smart Material
(http://www.smart-material.com). As this type of transducer is widely used in the research commu-
nity, this section shows how to integrate MFCs in piezoelectric plate models in SDT. Note however
that all types of piezocomposites can be modeled, providing sufficient material data is available,
which is rarely the case, as highlighted in the following for the case of MFCs.

Both d3; and d33 MFCs have been developed. The d3; MFCs are based on the same concept as
the bulk ceramic patches where poling is made through the thickness (Figure ) The d33 MFCs
are aimed at exploiting the ds3 actuation/sensing mode. This can be done by aligning the poling
direction and the electric field with the fiber direction. The solution generally adopted is to use
inter-digitated electrodes (IDE) as shown in Figure [7.2b, which results in curved electric field lines,
with the majority of the electric field aligned in the fiber direction. The general layout of both types
of MFCs is represented in Figure In the Smart Material documentation, the dss-type is referred
to as Pl-type elongator (because dss > 0) and the ds;-type is referred to as P2-type contractor
(because d3; < 0). Piezoelectric plate elements implemented in SDT are based on the hypothesis
that the poling direction is through the thickness, which is suitable for the P2-type MFCs, but not
for the P1-types. It is possible however with a simple analogy to model a Pl-type MFC using the
piezoelectric plate elements of SDT. The analogy is based on the equality of free in-plane strain of
the transducer due to an applied voltage and capacitance. This requires two steps. The first one is
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Figure 7.2: Electric fields in a) d3; and b) ds3 piezocomposites
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Figure 7.3: General layout of a) d3;-type MFCs and b) dss-type MFCs
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to replace the curved electric field lines by a uniform field aligned with the poling direction, equal
to E = V/p where p is the distance between the fingers of the interdigitated electrodes (Figure .

Curved electric field Uniform elecric field
+ - + - + - + -
| ' | | fiber
+ - T B + ? T B
p p

Figure 7.4: The curved electric field can be replaced by an equivalent electric field E = V/p

The second step is to express the equivalence in terms of free strains taking into account the difference
of local axes (this is because direction 3 is the poling direction which is different in both cases, see
Figure .

Silpa = ds1|p2¥ = S3|p1 = dss|p1% — da1|p2 = ds3|p1 2

7.1
Salpa = dsa|p2 ¥ = So|p1 = ds2|p1y — ds2|p2 = ds2|p13 (7.1)

As the thickness of the patch h is generally different from the distance between the fingers of the
inter-digitated electrodes p, a h/p factor must be used. For MFCs, h = 0.180mm and p = 0.500mm
so that h/p = 0.36. The PZT material used in MFCs has properties similar to the Ceramtec P502
material described in Section section . If we assume that the active layer of the MFC is made of
a bulk piezoceramic of that type, the equivalent ds; is given by :

h 0.18
Silp2 = d33|P1]; = 440W(PC/N) = 158.4(pC/N) (7.2)

This value is lower than the ds; coefficient of the bulk ceramic (185 pC/N). This shows that al-
though the ds3 coefficient is larger, the spacing of the fingers of IDE reduces the equivalent strain per
Volt (ppm/V). This spacing cannot however be made much smaller as the part of the electric field
aligned with the plane of the actuator would be significantly reduced. These findings are confirmed
by the tabulated values of free strain per volt (ppm/V) in the fiber direction given in the datasheet of
MFCs. Note that because the limiting value for actuation is the electric field and not the voltage, the
Pl-type MFCs have a much higher maximum voltage limit (1500 V) than the P2-type MFCs (360
V), leading to the possibility to achieve higher free strain, but at the cost of very high voltage values.

Similarly, the dielectric permittivity must be adapted to model P1-type MFCs using an equivalent
P2-type MFC. This is done by expressing the equality of the capacitance:

el | po b el lp1bh R\ ?
Clp2 = 33’};“) =Clp1 = 33'? — elg|p2 = el3p1 (p) (7.3)
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Figure 7.5: Electric fields and local axes used to model a Pl-type MFC (b) with an equivalent
P2-type MFC (a)

The fact that piezoelectric fibers are mixed with an epoxy matrix introduces some orthotropy both
at the mechanical and the piezoelectric levels. This means that all the parameters of the compliance
matrix of an orthotropic material must be identified, together with all piezoelectric coeffi-
cients . As we are integrating these transducers in plate structures, and assuming that the
poling is in the direction of the thickness with electrodes on top and bottom of the piezoelectric
layers, the compliance matrix reduces to:

5 7 0 0 0
—Vz 1
o o 0 0 0
[s“] =1 o 0 &= 0 0 (7.4)
0 0 0 &z 0
1
I 0 0 0 0 el
with Vé’—; = %, the matrix of piezoelectric coefficients to:
[d] = [ d31 dgg 0 00 ] 3 (75)
and the matrix of dielectric permittivities to a scalar:
') ="les ] (7.6)

In order to model such orthotropic transducers, it is therefore necessary to have access to 6 mechan-
ical properties F, Ey, Vgy, Guy, Gz, Gyz, two piezoelectric coefficients dzi, d32, and one dielectric
constant z—:g3. In the following, direction x will be replaced by L standing for ’longitudinal’ (i.e. in
the fiber direction) and y by T for ’transverse’ (i.e. perpendicular to the fiber direction).
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As there are no established and standardised techniques for testing piezocomposite transducers and
identifying their full set of properties, it is common to find only a limited set of these coefficients
in the datasheet of manufacturers. In addition, when such properties are given, they are measured
on the full packaged piezocomposite transducer, which makes it difficult to translate them to the
properties of each layer without making strong assumptions. The strategy adopted in this tutorial is
to consider that an MFC is made of 5 layers (Figure . The electrode layer is slightly orthotropic
due to the presence of the copper, but this effect can be neglected as it does not influence the overall
behavior of the transducer. The 4 outer layers are therefore considered as homogeneous layers with
the properties given in Table

| Kapton |4 40pum
[ 14 18},Lm

Electrode layers .
(copper + ep¥)xy) Active Layer 180um

N

| 14 18um
| Kapton |4 40um

Figure 7.6: A MFC can be modeled as a 5-layer composite with an inner active layer and four passive
layers

Material property ‘ value ‘ unit
Epoxy

E 2.6 GPa

v 0.33

p 1500 | kg/m3
Kapton

E 2.8 GPa

v 0.3

p 1580 | kg/m3

Table 7.1: Mechanical properties of the passive layers of MFCs

The mechanical, piezoelectric and dielectric properties of the active layers can be computed from
their constituents using piezoelectric homogenization, assuming that the PZT material is Ceramtec
P502, the matrix is epoxy with the properties given in Table and the volume fraction of fibers is
86%. An analytical approach validated with detailed numerical computations has been developed in
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[3] and [10]. The homogenized properties found in these studies are given in Tables[7.2)and[7.3] They
correspond to the MFC_P2_AL and MFC_P1_AL properties inm_piezo Database]l For the Pl-type
MFCs, the values from Table have been corrected with the h/p factor for the piezoelectric
properties, and the (h/p)? factor for the dielectric constant. A value of h/p = 0.36 has been used.

P2 MFC Homogenized Properties Symbol Unit  Mixing rules

Young’s modulus Er GPa 47.17
Er GPa 16.98
Shear Modulus Grr GPa 6.03
G GPa 6.06
Gr. GPa 17.00
Poisson’s ratio viT - 0.395
Piezoelectric charge constants d31 pC/N -183
d32 pC / N -153
Dieletric relative constant (free) elifeo - 1600

Table 7.2: Homogenized properties of the active layer of P2-MFCs calculated using the analytical
mixing rules of [10]

P, MFC Homogenized Properties Symbol Unit  Mixing rules

Young’s modulus Er GPa 42.18
Er GPa 16.97
Shear Modulus Grr GPa 6.03
GTz GPa 17
Gr. GPa 6.06
Poisson’s ratio VLT - 0.380
Piezoelectric charge constants dsa pC/N -176
d33 pC/N 436
Dieletric relative constant (free) — el;/eo - 1593

Table 7.3: Homogenized properties of the active layer of P1-MFCs calculated using the analytical
mixing rules of [10] (correction factor not included)
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The homogenized properties can also be obtained using numerical homogenization. This allows
to represent more accurately the curved electric field due to the interdigitated electrodes. This is
illustrated in the next section.

7.2 Numerical modeling of piezoelectric layers with IDE

Our first numerical example concerns a bulk piezoelectric patch with inter-digitated electrodes (IDE).
The principle of such electrodes is illustrated in Figure [11]. The continuous electrodes are re-
placed by thin electrodes in the form of a comb with alternating polarity. This results in a curved
electric field. Except close to the electrodes, the electric field is aligned in the plane of the actuator.
In doing so, the extension of the patch in the plane is due to both the d3;-mode and ds3-mode. The
dss-mode is interesting because the value of ds3 is 2 to 3 times higher than the ds1, d3o coefficients.
In addition, as ds3 and d3; have opposite sign, the application of a voltage across the IDE will lead
to an expansion in the longitudinal direction, and a contraction in the lateral direction, and the
amplitudes will be different.

a) d;, mode b) d,, mode - interdigitated

i

mm Positive electrode

== Negative electrode
== Electric field

Figure 7.7: Electric field for a) continuous electrodes b) Inter-digitated electrodes

The behavior of a piezoelectric patch with interdigitated electrodes can be studied by considering a
representative volume element as shown in Fig

Let us consider such a piezoelectric patch whose geometrical properties are given in Table [7.4] The

default material considered is again SONOX_P502_iso (Table [4.3).



7.2. NUMERICAL MODELING OF PIEZOELECTRIC LAYERS WITH IDE 153

€
e

Figure 7.8: Definition of a representative volume element to study the behavior of a piezoelectric
patch with IDEs

Property | Value
Ly 0.4 mm
ly 0.3 mm
P 0.7 mm
e 0.05 mm

Table 7.4: Geometrical properties of the RVE

In d_piezo(’TutoPzPtchNumIDE-s1’) , we compute the static response due to a unit voltage ap-
plied across the electrodes, and represent the curved electric field. The mesh is first built in SI unit,
and then transformed in mm.

d_piezo(’TutoPzPtchNumIDE-s2’) allows to visualize the electric field. The resulting deformation
and electric field are represented in Fig[7.9

%% Step 2 - visualize electric field
cf.sel(1)={’groupall’,’colorface none -facealphaO -edgealpha.l’};
p_piezo(’viewElec EltSel "matidl" DefLen 50e-3 reset’,cf);
fecom(’scd 1e-107)

p_piezo(’electrodeview -fw’,cf); % to see the electrodes on the mesh
iimouse(’zoom reset’)
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cf.mdl.name="patch_IDE_EField’;d_piezo(’SetStyle’,cf); feplot(cf);
a) b)

patch_IDE_deformed patch_IDE_EField
Applied Voltage (10 Hz) e Applied Voltage (10 Hz)

patch_IDE_EField_2D
Applied Voltage (10 Hz)
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Figure 7.9: a) Free deformation of the IDE patch under unit voltage actuation b) 3D Electric field
distribution and c¢) 2D Electric field

In d_piezo(’TutoPzPtchNumIDE-s3’) , the mean strains Si, 52 and S3 and the mean electric field
in direction 3 (poling direction) are then computed. In this example, the electric field is aligned with
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the poling direction, but is of opposite direction, resulting in a negative value of the mean strain
S3 (dss is positive). Because d3; and dsy are negative, the mean values of S; and Sy are positive:
when the patch contracts in direction 3, it expands in directions 1 and 2. By dividing the mean
strains by the mean electric field in the poling direction, one should recover the dsq, dss and dsg
coefficients of the material. The mean value of F3 is however different from the value which would
be obtained if the electric field was uniform (continuous electrodes on the sides of the patch). This
value is considered here as the reference analytical value given by F3 = %. Note that due to the
conversion to mm, the voltage is expressed in pV'.

Relation between mean strain on free structure and d_3i
{’E3 mean’} {[-1.1442]} {[-1.4286]} {’E3 analytic’}

{’Sx/E3"} {[-1.8500e-13]} {[-1.8500e-13]} {’d_31(mm/muV)’}
{’sy/E3’} {[-1.8500e-131} {[-1.8500e-131} {’d_32(mm/muV) ’}
{’sz/E3"} {[ 4.4000e-13]1} {[ 4.4000e-13]} {’d_33(mm/muv)’}

The ratio between the mean of F5 and the analytical value is about 0.80, which means that the free
strain of an IDE patch with the geometrical properties considered in this example will be about 20 %
lower than if the electric field was uniform. In fact, the spacing of the electrodes in an IDE patch is
a compromise between the loss of performance due to the part of the piezoelectric material in which
the electric field is not aligned with the poling direction, and the distance between the electrodes
which, when increased, decreases the effective electric field for a given applied voltage.

In d_piezo(’TutoPzPtchNumIDE-s4’) , the total charge on the electrodes and the charge density
are computed, which allows also to compute the value of the capacitance. Figure [7.10] shows the
distribution of the charge density on the electrodes.

The capacitance of the patch can be computed and compared to the analytical value (for a uniform

field) given by CT = %:

{"C_{1DE}’} {[2.5019e-18]} {[2.8080e-18]} {’C analytic’}

The capacitance of the IDE patch is about 10% lower than the analytical value.

In d_piezo(’TutoPzPtchNumIDE-s5’) , we use fe _stress to compute and visualize the stress and
strain maps in the patch with IDE electrodes. Figure [7.11] shows the colormap of Ty, Th and T3. It
is clear that the curved electrical field induces important stress concentrations in the area close to
the electrodes
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patch_IDE_charge_elec
Applied Voltage (10 Hz) 10%
x

Figure 7.10: Charge density on the electrodes resulting from a static unit voltage applied to the
IDEs

%% Step 5 - Stress and strain visualisation

% Stress field using fe_stress

cl=fe_stress(’stressAtInteg -gstate’,model,def);
cf.sel="reset’;cf.def=fe_stress(’expand’,model,cl);
cf.def.lab={’T11’;’T22’; T33’;°T23”;°T13?;°T12’;°D1°;°D2’;°D3’}; %
fecom(’colordata 99 -edgealpha.1’);
fecom(’colorbar’,d_imw(’get’,’CbTR’,’String’,’Stress/Voltage [kPa/muV]’));
iimouse(’trans2d 0 0 0 1.6 1.6 1.6°)

The strains and electrical displacement can also be computed with fe_stress, but this requires to
replace the piezoelectric material with a ’PiezoStrain’ material:

%- Strain visualisation

% Replace with ’PiezoStrain’ material

mo2=model; mo2.pl=m_piezo(’dbval 1 PiezoStrain’)

% Now represent strain fields using fe_stress
cl=fe_stress(’stressAtInteg -gstate’,mo2,def);
cf.sel=’"reset’;cf.def=fe_stress(’expand’,mo2,cl);
cf.def.lab={’S11’;°8227;°8337;°823”;°S13”;’S127;’E1’;’E2’; ’E3’ };
fecom(’colordata 99 -edgealpha.l1’);
fecom(’colorbar’,d_imw(’get’,’CbTR’,’String’,’Strain/Voltage [1/muV]’));
iimouse(’trans2d 0 0 0 1.6 1.6 1.6°)
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IDE_patch_stress
Strain extended at nodes

IDE_patch_stress
Strain extended at nodes

IDE_patch_stress
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Figure 7.11: Colormap of stresses 11, 15 and T3 due to applied voltage on the patch with IDE
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Figure shows the colormap of Si, S2 and S3. The strain is uniform in the central region, but
there are strong variations in the areas under the electrodes.

IDE_patch_strain IDE_patch_strain
Strain extended at nodes Strain extended at nodes

IDE_patch_strain
Strain extended at nodes

Figure 7.12: Colormap of strains 51, Se and S3 due to applied voltage on the patch with IDE

Note that in this example, the poling direction has been considered to be aligned with the z-axis. In
practice, as the IDE patch is usually poled using the IDE electrodes, the poling direction is aligned
with the curved electric field lines. This difference of poling only concerns a few elements in the
mesh, and from a global point of view, it does not have an important impact on the assessment of
the performance of the patch, but it may have an important impact on the prediction of strains and
stresses around the electrode areas. Aligning the poling direction with the curved electric field lines
is possible but requires the handling of local basis which are oriented based on the computed electric
field lines.
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7.3 Periodic homogenization of piezocomposite layers

In this example, we will show how to compute the homogeneous equivalent mechanical, piezoelectric
and dielectric properties of both P1 and P2-type MFCs. The methodology is general and can be
extended to other types of piezocomposites.

7.3.1 Constitutive equations

For d3; patches, the poling direction (conventionally direction 3) is normal to the plane of the patches
(Figure|7.13p) and according to the plane stress assumption 73 = 0. The electric field is assumed to
be aligned with the polarization vector (E2 = E; = 0). The constitutive equations reduce to:

Ty [ B B0 0 0 —eb | S1
Ty ok 0 0 0 —eiy So
Ty . 0 0 & o 0 0 Sy
T6 0 0 0 0 CGEG* 0 SG
D3 | €5 €3 0 0 0 &35 i Es

where the superscript * denotes the properties under the plane stress assumption (which are not
equal to the properties in 3D).

(a) (b)

Electrodes z=1

Electrodes L=1 ~_ L=3

=2 =
E“p 2
Homogenous d,, patch Homogenous d,, patch
with electrodes with electrodes

Figure 7.13: Homogeneous models of the piezoelectric layers with electrodes : d3; and dss piezoelec-

tric layers

For ds3 patches, although the electric field lines do not have a constant direction, when replacing
the active layer by an equivalent homogeneous layer, we consider that the poling direction is that
of the fibers (direction 3, Figure [7.13p), and that the electric field is in the same direction. With
this reference frame, the plane stress hypothesis implies that 77 = 0. The constitutive equations are

given by
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T [ By B0 0 0 —eby | S
T ko0 0 0 —es3s Ss
Ty . 0 0 & o 0 0 S
T5 o 0 0 0 c& o0 0 Ss (7.8)
Ts 0 0 0 0 c& o0 Se
D3 | €5 €33 0 0 0 53 Es

7.3.2 Periodic homogenization

Homogenization techniques are widely used in composite materials. They consist in computing the
homogeneous, equivalent properties of multi-phase heterogeneous materials. The homogenization
is performed on a so-called representative volume element (RVE) which is a small portion of the
composite which, when repeated in 1, 2 or 3 directions forms the full composite. In the case of flat
transducers considered here, the composite is periodic in 2 directions (the directions of the plane of
the composite). Equivalent properties are obtained by writing the constitutive equations (Equation
((7.7)) or ((7.8))) in this case) in terms of the average values of T3, S;, D;, E; on the RVE:

T=ifyTdv  Di=1bf, DV
Si= il SV Bi= b Eav

where ~ denotes the average value.

For both types of piezocomposites, matrix [cE*] is a function of the longitudinal (in the direction of
the fibers) and transverse in-plane Young’s moduli (F, and E7), the in plane Poisson’s ratio vy,
the in-plane shear modulus Gr, and the two out-of-plane shear moduli G, and Gr,. Matrix [e*]
is given by
E
') = [d) [¢"]

where

[d=[ds1 dzo 0 0 0]

in the case of d3; piezocomposites and
[d]:[d32 dss 0 0 0]

in the case of d33 piezocomposites. Note that the coefficients d;; are unchanged under the plane
stress hypothesis.

When used as sensors or actuators, piezocomposite transducers are typically equipped with two
electrodes. These electrodes impose an equipotential voltage on their surfaces, and the electrical
variables are the voltage difference V' across the electrodes, and the electrical charge (). These two
variables are representative of the electrical macro variables which will be used in the numerical
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models of structures equipped with such transducers : transducers are used either in open-circuit
conditions (@ = 0 or imposed) or short-circuit conditions (V' = 0 or imposed). Instead of the average
values of D; and F;, the macro variables () and V are therefore used in the homogenization process.
For a homogeneous ds3 transducer (Figure , the constitutive equations can be rewritten in terms
of these macro variables:

T o) G0 0 0 e/ ] (s,
T3 ngC*) ch*) 0 0 0 —€53/p S3
s (| o 0 5 ¢ 0 0 Sy (7.9)
T | o 0 0 5 0 S5 '
Ts 0 0 0 0 B g S6

[ @ | e5 A ejA 0 0 0 essAfp | N -V

where SC stands for ’short-circuit’ (V' = 0), p is the length of the transducer, A is the surface of the
electrodes of the equivalent homogeneous transducer and @ is the charge collected on the electrodes.

Figure 7.14: Homogeneous model of the d33 piezocomposite and definition of the macro variables

For d31-piezocomposites, the approach is identical.

7.3.3 Definition of local problems

The RVE is made of two different materials. In order to find the homogeneous constitutive equations,
Equation (7.9) is written in terms of the average values of the mechanical quantities S; and 7; in
the RVE and the electrical variables ) and V defined on the electrodes:

7 @(SC*) @(SC*) 0 0 0 —e32"/p Sa
T, 550" gg5(5C%) 0 0 0 —e33"/p S3
7 0 0 e(5C%) 0 0 0 S
T _ o= 7.10
T5 0 0 0 2 (50%) 0 0 S5 ( )
T 0 0 0 0 Za5(5C) 0 Se

Q) | a4 @A 0 0 0 &ALV
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The different terms in Equation can be identified by defining local problems on the RVE. The
technique consists in imposing conditions on the different strain components and V' and computing
the average values of the stress and the charge in order to find the different coefficients. For the
electric potential, two different conditions (V' = 0,1) are used. For the mechanical part, we assume
that the displacement field is periodic in the plane of the transducer: on the boundary of the RVE,
the displacement can be written :

Uy :gij Tj + v; (7.11)

where wu; is the ¥ component of displacement, ?ij is the average strain in the RVE (tensorial
notations are used), x; is the 4t spatial coordinate of the point considered on the boundary, and v;
is the periodic fluctuation on the RVE. The fluctuation v is periodic in the plane of the transducer
so that between two opposite faces (noted A~ /A", B~/B* and C~/C*, Figure[7.15), one can write

(v(x]KJr) = v(x]K*), K=AB,C):

ulft — T =5, (a:jK+ —a:jl-(_) K =AB,C (7.12)
Because we consider a plate with the plane stress hypothesis 17 = 0, equation should not be
satisfied for K = A and j = 1 (no constraint on the normal displacement on faces AT and A™). For
a given value of the average strain tensor (S;;), equation () defines constraints between the
points on each pair of opposite faces. This is illustrated in Figure where an average strain S
is imposed on the RVE and the constraints are represented for us on faces B~ and B™.

nY

S
A7

Figure 7.15: Definition of pairs of opposite faces on the RVE

Note that these constraints do not impose that the faces of the RVE remain plane, which is important
for the evaluation of the shear stiffness coefficients.
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Figure 7.16: Example of an average strain S imposed on the RVE and associated periodic conditions

In total, six local problems are needed to identify all the coefficients in (Figure . The first
problem consists in applying a difference of potential V' to the electrodes of the RVE and imposing
zero displacement on all the faces (except the top and bottom). In the next five local problems, the
difference of potential is set to 0 (short-circuited condition), and five deformation mechanisms are
induced. Each of the deformation mechanisms consists in a unitary strain in one of the directions
(with zero strain in all the other directions). For each case, the average values of T; and S;, and the
charge accumulated on the electrodes @), are computed, and used to determine all the coefficients in
, from which the engineering constants are determined.
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Figure 7.17: The six local problems solved by the finite element method in order to compute the
homogenized properties of d3;-MFCs

7.3.4 Application of numerical periodic piezoelectric homogenization to P2-MFCs

We are going to compute the homogeneous properties of a P2-type MFC with varying volume frac-
tion of piezoelectric fibers.

In d_piezo(’ TutoPzMFCP2Homo-s1’) , we first define the range of volume fractions to compute the
homogeneous properties and the dimensions of the RVE.

% See full example as MATLAB code in d_piezo(’ScriptTutoPzMFCP2Homo’)
d_piezo(’DefineStyles’);

%% Step 1 - Meshing of RVE

% Meshing script can be viewed with sdtweb d_piezo(’MeshHomoMFCP2’)

Range=fe_range(’grid’,struct(’rho’,[0.001 linspace(0.1,0.9,9) .999],
’1x’,.300,’1ly’,.300,’1z’,.180,°dd’,0.04)) ;
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Then in d_piezo(’TutoPzMFCP2Homo-s2’) for each value of the volume fraction of piezoelectric
fibers p, we compute the solution of the six local problems, the average value of stress, strain and
charge. From these values we extract the engineering mechanical properties, the piezoelectric and
dielectric properties.

%% Step 2 - Loop on volume fraction and compute homogenize properties
for jPar=1:size(Range.val,1)

RO=fe_range(’valCell’ ,Range, jPar,struct(’Table’,2));% Current experiment

% Create mesh

model= ...

d_piezo(sprintf ([’meshhomomfcp2 rho=%0.5g 1x=%0.5g 1ly=%0.5g’
’12=%0.5g dd=%0.5g’]1, [RO.rho RO.1x RO.1ly RO.1z R0O.dd]));

% Define the six local problems
RB=struct (’CellDir’, [max(model.dx) max(model.dy) max(model.dz)],’Load’,
{{’el11’,7e22’,’e12’,7e237,’e13’,’vIn’ }});
% Periodicity on u,v,w on x and y face
% periodicity on u,v only on the z face
RB.DirDofInd={[1:3 0],[1:3 0],[1 2 0 0]};
% Voltage DOFs are always eliminated from periodic conditions

% Compute the deformation for the six local problems

def=fe_homo (’RveSimpleLoad’ ,model,RB);

% Represent the deformation of the RVE
cf=comgui(’guifeplot-reset’,2);cf=feplot(model,def); fecom(’colordatamat’)

% Compute stresses, strains and electric field

al=p_piezo(’viewstrain -curve -mean -El1tSel MatIdl reset’,cf); ’ Strain epoxy
a2=p_piezo(’viewstrain -curve -mean -EltSel MatId2 reset’,cf); 7% Strain piezo
bl=p_piezo(’viewstress -curve -mean- EltSel MatIdl reset’,cf); % Stress epoxy
b2=p_piezo(’viewstress -curve -mean- EltSel MatId2 reset’,cf); % Stress piezo

% Compute charge on electrodes
mol=cf.mdl.GetData;
indl=fe_case(mol,’getdata’,’Top Actuator’);indl=fix(ind1l.InputDOF);
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mol=p_piezo(’electrodesensq TopQ2’,mol,struct(’MatId’,2,’InNode’,indl));
mol=p_piezo(’electrodesensq TopQl’,mol,struct(’MatId’,1,’InNode’,indl));
cl=fe_case(’sensobserve’,mol,’TopQl’,cf.def); ql=cl.Y;
c2=fe_case(’sensobserve’,mol,’TopQ2’,cf.def); g2=c2.Y;

% Compute average values:

a0=al.Y(1:6,:)*x(1-RO.rho)+a2.Y(1:6,:)*R0.rho;
b0=b1.Y(1:6,:)*(1-RO.rho)+b2.Y(1:6, :)*R0.rho;

q0=ql1+q2; % Total charge is the sum of charges on both parts of electrode

% Compute C matrix

C11=b0(1,1)/a0(1,1); C12=b0(1,2)/a0(2,2); C22=b0(2,2)/a0(2,2);
C44=b0(4,4)/a0(4,4); C55=b0(5,5)/a0(5,5); C66=b0(6,3)/a0(6,3);
sE=inv([C11 C12; C12 C22]1);

% Extract mechanical engineering constants
E1(jPar)=1/sE(1,1); E2(jPar)=1/sE(2,2); nul2(jPar)=-sE(1,2)*E1(jPar);
nu21(jPar)=-sE(1,2)*E2(jPar) ;G12(jPar)=C66; G23(jPar)=C44; G13(jPar)=C55;

% Extract piezoelectric properties
e31(jPar)=b0(1,6)*R0.1z; e32(jPar)=b0(2,6)*R0.1z;
d=[e31(jPar) e32(jPar)]*sE; d31(jPar)=d(1); d32(jPar)=d(2);

% Extract dielectric properties
eps33(jPar)=-q0(6)*R0.1z/(R0O.1x*R0O.1y) ;
eps33t (jPar)=eps33(jPar)+ [d31(jPar) d32(jPar)]*[e31(jPar); e32(jPar)];

end 7% Loop on rho0 values

Figure [7.18| represents the solution of the six local problems for p = 0.6.

In d_piezo(’ TutoPzMFCP2Homo-s3’) , we can now plot the evolution of the homogeneous properties
of the P2-type MFC as a function of the volume fraction p:

Figure [7.19] represents the evolution of the mechanical properties and Figure represents the
evolution of the piezoelectric and dielectric properties as a function of p. The properties of M FC
transducers correspond to the value of p = 0.86.
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Figure 7.18: Solutions of the six local problems on the RVE for p = 0.6 for a P2-type MFC
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Figure 7.19: Evolution of the homogeneous mechanical properties of a P2-type piezocomposite as a
function of p



168

CHAPTER 7. COMPOSITE PIEZOELECTRIC ACTUATORS AND SENSORS

P2-MFC homogenization P2-MFC homogenization
2 2
-4 4
% 5
5 8 8 8
< <
10 -10
12 12
14 14
-16 -16
01 02 03 04 O
»
x107" 1o
P2-MFC homogenization P2-MFC homogenization
1800 P2-MFC homogenizatig”
2
1600
-4
1400
-
1200
8 .
-3
] <~ 1000
-10 T
T 800
-12
600
14
400
-16
200
-18
X 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9
» 3 »

Figure 7.20: Evolution of the homogeneous piezoelectric and dielectric properties of a P2-type

piezocomposite as a function of p
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7.3.5 Application of numerical periodic piezoelectric homogenization to P1-MFCs

As we did for the P2-type MFC, we will now compute the homogeneous properties of a Pl-type
MFC with varying volume fraction of piezoelectric fibers.

In d_piezo(’ TutoPzMFCP1Homo-s1’) , we first define the range of volume fractions to compute the
homogeneous properties and the dimensions of the RVE.

Then in d_piezo(’TutoPzMFCP1Homo-s2’) for each value of the volume fraction of piezoelectric
fibers p, we compute the solution of the six local problems, the average value of stress, strain and
charge. From these values we extract the engineering mechanical properties, the piezoelectric and
dielectric properties. The process is identical to the one in the previous example with P2-type MFCs.

P1_homo P1_homo P1_homo
33 e12

P1_homo
&3

<
<3

Figure 7.21: Solutions of the six local problems on the RVE for p = 0.6

Figure represents the inhomogeneous electric field for the sixth local problem (applied voltage)
and p = 0.6.

In d_piezo(’TutoPzMFCP1Homo-s3’) , we plot the evolution of the homogeneous properties of the
Pl-type MFC as a function of the volume fraction p
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Figure 7.22: Electric field for the sixth local problem (applied voltage) on the RVE of a Pl-type
MFC for p = 0.6
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Figure 7.23: Evolution of the homogeneous mechanical properties of a Pl-type piezocomposite as a
function of p
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Figure [7.23| represents the evolution of the mechanical properties and Figure [7.24] represents the
evolution of the piezoelectric and dielectric properties as a function of p. The properties of M FC
transducers correspond to the value of p = 0.86.
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Figure 7.24: Evolution of the homogeneous piezoelectric and dielectric properties of a Pl-type
piezocomposite as a function of p

All the properties match well the results presented in [3]

7.4 Example of MFC transducers integrated in plate structures

This example deals with a cantilever aluminum plate with two P1-type MFCs (M8528-P1) attached
on each side of the plate. The geometry is represented in Figure [7.25] The plate is meshed with
rectangular piezoelectric elements. The main part of the beam is made of one layer (aluminum),
and the part where the two MFCs are attached is made of 11 layers (5 layers for each MFC and the
central aluminum layer).

In d_piezo(’TutoPzMFCPlate-s1’) , we build the mesh, define the sensors and actuators, and com-
pute the static response. Using the two MFCs as actuators, we define two combinations in order to
induce bending or traction and compute and represent the static response in (Figure [7.26]).
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Figure 7.25: Geometric details of the aluminum plate with 2 P1-type MFCs
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Figure 7.26: Static deformation under combined voltage actuation in a) bending, b) traction

The deformed shape under traction actuation highlights the fact that the induced strain in the lat-
eral direction is of opposite sign with respect to the longitudinal direction, which is due to the fact
that we are using a Pl-type MFC. Fl-type MFCs are based on the same layout as Pl-types but
the fibers are oriented with an angle of 45. Such transducers can be easily modeled by changing
the angle of the active layer in the multi-layer sequence. Assume that the bottom MFC makes an
angle of 45 with respect to the axis of the beam and that the top MFC makes an angle of -45. Each
actuator induces both bending and torsion in the plate.
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This is done in d_piezo(’TutoPzMFCPlate-s2’) . The torsion can be easily seen by looking at the
deformed shape resulting from the combination of the two MFCs with opposite signs which cancels
the bending effect, as shown in Figure

%% Step 2 - Rotate fibers

model.il(2, [20 44])=[45 -45];

di=fe_simul (’dfrf’,stack_set(model,’info’,’Freq’,0)); % static response
cf.def=d1l; fecom(’scd 10’); C2=fe_case(’SensObserve - dim 2 3 1’,sens,dl);

MFCPlate_torsion
Vm-u2 (0 Hz)

Figure 7.27: Static deformation under combined voltage with opposite sign using two F'1-type MFCs

7.5 Using shaped orthotropic piezocomposite transducers

7.5.1 Introduction

Typical piezoelectric transducers found on the market are rectangular or circular. Different re-
searchers have however studied the possibility to use more complex shapes. This idea was mainly
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driven by the active control applications. The first developments in this direction concern trian-
gular actuators which will be used in the following example after recalling the theory behind the
development of such transducers. When used as an actuator, an applied voltage on a piezoelectric
patch results in a set of balanced forces on the supporting structure. The analytical expression
of these so-called equivalent forces has been derived analytically in [I2] in the general case of an
orthotropic patch poled through the thickness with an arbitrary shape and attached to a supporting
plate (assumed to follow Kirchhoff plate theory). The analytical expressions show that these forces
are a function of the material properties of the piezo, as well as the expression of the normal to
the contour of the patch. In the case of a triangular patch, the equivalent forces are illustrated on
Figure They consist in point forces P and P/2, and bending moments M; and My whose

expressions are:

bl
P=—(es1 —es)pm 52mV
b+
M1: —eglsz (713)
b2 2
5 _e- +l e-
My = _%va
T

These expressions show that the point forces are only present when the material is orthotropic
(e31 # e32). An interesting application of the triangular actuator is to design it to be a point-force
actuator. This requires (i) to clamp the base of the triangle in order to cancel the bending moment
M; and the two point forces P/2, (ii) to cancel Ms. The result is a single point-force P at the tip
of the triangle. The cancelation of My requires to have [13]:

b2 2
Z-es1 +[%e b —
MQ:_wsz:o D g T2
Z+l2 l €31

(7.14)

This expression shows that the point-force actuator can only be achieved when e3; and esgs are of
opposite sign. With a PZT ceramic, this is possible using inter-digitated electrodes, which result in
a compression in the lateral direction when the transducers elongates in the longitudinal direction.
A possibility is to use a triangular transducer based on the same principle as the P1 — type MFC.
The resulting force at the tip of the triangle is given by:

P = fegl?sz (715)

Given the material properties of the active layer of P1-MFCs in Table the values of e3; and ez
are:

_ E E _ 2
€31 = ( Toropr ) @31+ (i oy ) ds2 = 18.32C/m (7.16)
esr = (2ELEL_ ) dyy + (1525 ) ds2 = —0.1859C /m?
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Figure 7.28: Equivalent loads for an orthotropic piezoelectric actuator

and the b/l ratio leading to a point load actuator is

—€32
=2

b
. = 0.2015 (7.17)

€31

Another possibility is to use a full piezoceramic instead of a composite, which is illustrated below.

7.5.2 Example of a triangular point load actuator

We consider an example similar to the one treated in [I3] which consists in a 414mm x 314dmm x
1mm aluminum plate clamped on its edges, on which a triangular piezoelectric transducer is fixed
on the top surface in order to produce a point load, as illustrated in Figure [7.29] The piezoelectric
material used is SONOX P502 whose properties are given in Table with the exception that the
value of 1, = 0.4 in order to be in accordance with the value used in [I3]. With these material
properties, the b/l ratio to obtain a point load actuator is b/l = 0.336 (this will be verified in the
example script). The triangular ceramic has a thickness of 180um and is encapsulated between
two layers of epoxy (see properties in Table which have a thickness of 60um. The basis of the
triangle is 33.6mm in order to obtain the point load actuator (the height has a length of 100mm).
One triangle is attached to the top surface, and one to the bottom, and the transducers are driven
out of phase in order to induce pure bending of the plate and no in-plane motion.

7.5.3 Numerical implementation of the triangular point load actuator
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0.18mm M Aluminum

0.06mm e [ Piezo
1 B Epoxy
1mm

314mm

414mm
Figure 7.29: Description of the numerical case study for a point load actuator

d_piezo(’TutoPzTriangle-si1’) is used to generate the mesh shown in Figure [7.30]

WA=

Figure 7.30: Mesh of the aluminum plate with a triangular piezoelectric actuator
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Then, in d_piezo(’TutoPzTriangle-s2’) , the static response due to an applied voltage on the
piezo actuators is computed and represented on Figure

SSSplate_mesh
V-Act (0 Hz)

Figure 7.31: Static displacement due to voltage actuation on the triangular piezo

Ind piezo(’TutoPzTriangle-s3’) , we compute and compare the dynamic response of the plate ex-
cited with the triangular piezo and a point force whose amplitude is computed using Equation ((7.15]).
The computation is performed with a reduced state-space model using 20 mode shapes:

The amplitude and phase of the vertical displacement at the tip of the triangle are represented for
both cases in Figure showing the excellent agreement.
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SS20modes
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Figure 7.32: Dynamic response at the tip of the triangle due to (i) voltage actuation on the piezo
and (ii) point force at the tip of the triangle
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8.1 Design of an accelerometer and computation of its sensitivity

This application example deals with the determination of the sensitivity of a piezoelectric sensor to
base excitation.

8.1.1 Working principle of an accelerometer

By far the most common sensor for measuring vibrations is the accelerometer. The basic working
principle of such a device is presented in Figure (a). It consists of a moving mass on a spring and
dashpot, attached to a moving solid. The acceleration of the moving solid results in a differential
movement x between the mass M and the solid. The governing equation is given by,

M3+ cx + kx = —My (8.1)

In the frequency domain x /2 is given by,

x —1

= = 8.2
Fy —w?+ w2+ 2jéwwy, (8.2)
with w,, = \/% and £ = b/2vV kM and for frequencies w << wy,, one has,
T -1
=~ 8.3
Ty w2 (8.3)

showing that at low frequencies compared to the natural frequency of the mass-spring system, x is
proportional to the acceleration zy. Note that since the proportionality factor is ;—21, the sensitivity

of the sensor is increased as w2 is decreased. At the same time, the frequency band in which the
accelerometer response is proportional to Zy is reduced.

The relative displacement = can be measured in different ways among which the use of piezoelectric
material, either in longitudinal or shear mode (Figure . In such configurations, the strain applied
to the piezoelectric material is proportional to the relative displacement between the mass and the
base. If no amplifier is used, the voltage generated between the electrodes of the piezoelectric mate-
rial is directly proportional to the strain, and therefore to the relative displacement. For frequencies
well below the natural frequency of the accelerometer, the voltage produced is therefore proportional
to the absolute acceleration of the base.

8.1.2 Determining the sensitivity of an accelerometer to base excitation

A basic design of a piezoelectric accelerometer working in the longitudinal mode is shown in Fig-
ure In this example, the casing of the accelerometer is not taken into account, so that the device
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(a) (b)
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Figure 8.1: Working principle of an accelerometer

m mlil m
v =
Longitudinal mode Shear mode

Figure 8.2: Different sensing principles for standard piezoelectric accelerometers
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consists in a 3mm thick rigid wear plate (10mm diameter), a lmm thick piezoelectric element (5mm
diameter), and a 10mm thick (10mm diameter) steel proof mass. The mechanical properties of the
three elements are given in Table The piezoelectric properties of the sensing element are given in
Table [8.2] and correspond to SONOX_P502_iso property inm_piezo Database] The sensing element
is poled through the thickness and the two electrodes are on the top and bottom surfaces.

Back mass

10 mm

Piezoelectric

element ~

1 mm

3mm

3 é é ‘k\\\\\\\ Wear
2 ! g plate
14'1 | 5mm |

10 mm

Figure 8.3: Basic design of a piezoelectric accelerometer working in the longitudinal mode

Part Material E (GPa) p (kg/m?) v
Wear plate AlyO3 400 3965 0.22
Sensing element Piezo 54 7740 0.44
Proof mass Steel 210 7800 0.3

Table 8.1: Mechanical properties of the wear plate, sensing element and proof mass
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Property Value

d31 = d3o -185 10~ 2pC/N (or m/V)
ds3 440 10~ 2pC/N (or m/V)
dis = day 560 10~12pC/N (or m/V)
edy =el, =€l 1850 €9

€0 8.854 10~ 12Fm~!

Table 8.2: Piezoelectric properties of the sensing element

The sensitivity curve of the accelerometer, expressed in V/m/s? is used to assess the response of
the sensor to a base acceleration in the sensing direction (here vertical). In order to compute this
sensitivity curve, one needs therefore to apply a uniform vertical base acceleration to the sensor and
to compute the response of the sensing element as a function of the frequency.

The mesh is built and visualized in d_piezo(’TutoPzAccel-s1’) . It is shown in Figure 8.4

Figure 8.4: Mesh of the piezoelectric accelerometer. The different colors represent the different
groups

The call includes the meshing of the accelerometer, the definition of material properties, as well as
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the definition of electrodes. In addition, the bottom electrode is grounded, and both a voltage and
a charge sensor are defined for the top electrode.

In d_piezo(’TutoPzAccel-s2’) , a displacement sensor at the center of the base is defined in order
to compute the sensitivity.

%% Step 2 - Define sensors and actuators

% -MatID 2 requests a charge resultant sensor

% -vout requests a voltage sensor

model=p_piezo(’ElectrodeMPC Top sensor -matid 2 -vout’,model,’z==0.004");
% —ground generates a v=0 FixDof case entry

model=p_piezo(’ElectrodeMPC Bottom sensor -ground’,model,’z==0.003");

% Add a displacement sensor for the basis

model=fe_case(model, ’SensDof’,’Base-displ’,1.03);

The sensitivity for the sensor used in a voltage mode is then computed using an imposed displacement
on the basis. The measured displacement is transformed to acceleration in the frequency domain.
It is represented in Figure [8.5] and is computed with the following script:

(d-piezo(’TutoAccel-s3) )

%% Step 3 - Response with imposed displacement
% Remove the charge sensor (not needed)
model=fe_case(model, ’remove’,’Q-Top sensor’);

% Link dofs of base and impose unit vertical displacement

nl=feutil (’getnode z==0’,model);

rb=feutilb(’geomrb’,nl1,[0 0 0],fe_c(feutil(’getdof’,model) ,nl(:,1),’dof’));
rb=fe_def (’subdef’,rb,3); % Keep vertical displacement

model=fe_case(model, ’DofSet’,’Base’,rb);

% Other parameters
f=linspace(1e3,2e5,200)’;

model=stack_set(model,’info’,’Freq’,f); % freq. for computation

% Reduced ss-model
[sys,TR1]=fe2ss(’free 5 10 O -dterm’,model,5e-3); %

Cl=gbode(sys,f (:)*2*pi, ’struct-lab’);Cl.name=’SS-voltage’;
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C1.X{2}={’Sensor output(V)’;’Base Acc(m/s"2)’;’Sensitivity (V/m/s~2)’}; Y%outputs

% C1 compute accel and sensitivity
C1.Y(:,2)=C1.Y(:,2) .x(-(C1.X{1}*2*pi). 2); % Base acc
C1.Y(:,3)=C1.Y(:,1)./C1.Y(:,2);% Sensitivity

ci=iiplot; iicom(ci,’curveinit’,{’curve’,Cl.name,C1}); iicom(’ch3’);
d_piezo(’setstyle’,ci)

SS-voltage

N
e

|Sensitivity (V/m/s?):Base|
3
N

0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency [Hz] x10°

Figure 8.5: Sensitivity of the accelerometer in the voltage mode, uniform acceleration imposed at
the base

The sensor can also be used in the charge mode. The following scripts compares the sensitivity
of the sensor used in the voltage and charge modes. The sensitivities are normalized to the static
sensitivity in order to be compared on the same graph, as the orders of magnitude are very different
(Figure . The charge sensor corresponds to a short-circuit condition which results in a lower
resonant frequency than the sensor used in a voltage mode where the electric field is present in
section for a plate. Here the difference of eigenfrequency is however higher (about 10%) due
to the fact that there is more strain energy in the piezoelectric element, and that it is used in the
dz3 mode which has a higher electromechanical coupling factor than the ds; mode.
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(d-piezo(’TutoPzAccel-s4’) )

%% Step 4 - Compare charge and voltage mode for sensing

model=d_piezo(’MeshBaselAccel’);
model=fe_case(model, ’remove’,’V-Top sensor’);

% Short-circuit electrodes of accelerometer
model=fe_case(model, ’FixDof’,’V=0 on Top Sensor’,
p_piezo(’electrodedof Top sensor’,model));

% Other parameters
model=stack_set(model,’info’,’Freq’,f);

% Link dofs of base and impose unit vertical displacement
nl=feutil(’getnode z==0’,model);

rb=feutilb(’geomrb’,n1,[0 0 0],fe_c(feutil(’getdof’,model) ,n1(:,1),’dof’));
rb=fe_def (’subdef’,rb,3); % Keep vertical displacement
model=fe_case(model,’DofSet’,’Base’,rb);

% Reduced model
[sys2,TR1]=fe2ss(’free 5 10 O -dterm’,model,5e-3); %
C2=qgbode (sys2,f (:)*2*pi, ’struct’);C2.name=’SS-charge’;

C2.X{2}={’Sensor output(V)’;’Base Acc(m/s"2)’;’Sensitivity (normalized)’}; %outputs
C1.X{2}={’Sensor output(q)’;’Base Acc(m/s"2)’;’Sensitivity (normalized)’};

% C2 compute accel and sensitivity
C2.Y(:,2)=C2.Y(:,2) .x(-(C2.X{1}*2*pi)."2); ’ Base acc
C2.Y(:,3)=C2.Y(:,1)./C2.Y(:,2);% Sensitivity

% Normalize sensitivity to first freq
C1.Y(:,3)=C1.Y(:,3)/abs(C1.Y(1,3));

€2.Y(:,3)=C2.Y(:,3)/abs(C2.Y(1,3))

ci=iiplot; iicom(ci,’curveinit’,{’curve’,Cl.name,Cl;’curve’,C2.name,C2});

iicom(’ch3’); d_piezo(’setstyle’,ci)

8.1.3 Computing the sensitivity curve using a piezoelectric shaker
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Sensitivity (normalized) SS-voltage Base
SS-charge 1.99

Mixed data

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency [Hz] x10°

Figure 8.6: Comparison of the normalized sensitivities of the sensor used in the charge and voltage
mode
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Experimentally, the sensitivity curve can be measured by attaching the accelerometer to a shaker
in order to excite the base. Usually, this is done with an electromagnetic shaker, but we illustrate
in the following example the use of a piezoelectric shaker for sensor calibration. The piezoelectric
shaker consists of two steel cylindrical parts with a piezoelectric disc inserted in between. The base
of the shaker is fixed and the piezoelectric element is used as an actuator: imposing a voltage dif-
ference between the electrodes results in the motion of the top surface of the shaker to which the
accelerometer is attached (Figure [3.7).

10 mm

—>

Output Steel
voltage

Input
voltage N / 10 mm

-2 mm

\_/\ Piezoelectric
element

: 20 mm

»

Figure 8.7: Piezoelectric accelerometer attached to a piezoelectric shaker for sensor calibration

The piezoelectric properties for the actuating element in the piezoelectric shaker are identical to the
ones of the sensing element given in Table [£:3] and it is poled through the thickness.

In d_piezo(’TutoPzAccShaker-s1’) , the mesh is produced and visualized (Figure |8.8)).
Then in d_piezo(’TutoPzAccShaker-s2’) , a voltage actuator is defined for the piezoelectric disk
in the piezoelectric shaker by setting the bottom electrode potential to zero, and defining the top

electrode potential as an input, and an acceleration sensor is defined at the base of the accelerometer.

d_piezo(’TutoPzAccShaker-s3’) is used to compute the response on the sensors (acceleration at
the base of the accelerometer, and voltage on the piezo disk in the accelerometer) and to deduce the
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Acc_Shaker_Mesh

f ~ 1 | | | 1

Figure 8.8: Mesh of the piezoelectric accelerometer attached to a piezoelectric shaker

sensitivity of the accelerometer by dividing the sensor output by the base acceleration.

%% Step 3 - Compute response, voltage input on shaker
f=1linspace(1e3,2e5,200)’;
model=stack_set(model,’info’,’Freq’,f);

% Reduced ss-model
model=fe_case(mode1,’pcond’,’Piezo’,’d_piezo("Pcond”)’);
[sys,TR1]=fe2ss(’free 5 45 0 -dterm ’,model,le-3); %

Cl=gbode(sys,f(:)*2xpi, ’struct-lab’);Cl.name=’SS-voltage’;
C1.X{2}={’Sensor output(V)’;’Base Acc(m/s"2)’;’Sensitivity (V/m/s"2)’}; Joutputs

i Compute sensitivity
C1.Y(:,3)=C1.Y(:,1)./C1.Y(:,2);% Sensitivity

ci=iiplot; iicom(ci,’curveinit’,{’curve’,Cl.name,Cl}); iicom(’ch3’);
d_piezo(’setstyle’,ci)

The sensitivity curve obtained is shown in Figure It is comparable to the one computed with
imposed displacement around the natural frequency of the accelerometer, but at low frequencies,
the flat part is not correctly represented and a few spurious peaks appear at high frequencies. These
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differences are due to the fact that the piezoelectric shaker does not impose a uniform acceleration of
the base of the sensor, and has several resonance frequencies in the band of interest. There are also
lateral (contraction) effects due to the piezoelectric element in the shaker which induce a response
of the accelerometer and modify the sensitivity curve.

SS-voltage Sensitivity (V/m/sZ) Vin-Shaker

phase (w) [deg]

-100 U

0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency [Hz] x10°

Figure 8.9: Sensitivity curve obtained with a piezoelectric shaker
8.2 Vibration damping using a tuned resonant shunt circuit

8.2.1 Introduction

The idea of damping a structure via a resonant shunt circuit is very similar to the mechanical tuned
mass damper (TMD) concept. The mechanical TMD is replaced by a 'RL’ shunt circuit which,
together with the capacitance of the piezoelectric element to which it is attached, acts as a resonant
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'RLC’ circuit. By tuning the resonance frequency of this circuit to the open-circuit (OC) resonance
frequency of the structure equipped with a piezoelectric transducer, one can achieve vibration re-
duction around the resonant peak of interest. The mechanism is based on the conversion of part of
the mechanical energy to electrical energy which is then dissipated in the resistive component of the
circuit.

The part of mechanical energy which is converted into electrical energy is given by the generalized
electro-mechanical coupling coefficient «; of the mode i of interest. In practice, this generalized cou-
pling coefficient can be computed based on the open-circuit (OC) and short-circuit (SC) frequencies
Q; and w; of the piezoelectric structure. Experimentally, these frequencies are usually obtained via
the measurement of the impedance (V/I) or the capacitance (Q/V) of the piezoelectric structure,
and one has:

QZQ —w?

=~ =t 8.4
=" (54)
Once «; is known for the mode of interest, the values of R and L can be computed. Several rules
exist to compute the optimal values of R and L [I4]. We adopt here Yamada’s tuning rules which
are equivalent to Den Hartog’s tuning rules for the mechanical TMD. The first rule aims at tuning
the resonant circuit to the OC frequency §2; of the piezoelectric structure:

5=y (8.5)

We

1
We = 4/ ICo (8.6)

where Cjs is the capacitance of the piezoelectric element attached to the structure taken after the

resonant frequency of interest. Note that this value is in practice difficult to measure with precision.
In this example, we will take the value which is at the frequency corresponding to the mean value
between the SC resonant frequencies w; and w; 1. This first tuning rule allows to compute the value
of L. For different values of R, one can show that when plotting the response of the structure to
which the resonant shunt has been added for different values of R, all curves cross at two points P
and @) which are at the same height (Figure . The second tuning rule is aimed at finding the
optimal value of R which minimizes the response of the structure for the range of frequencies around
the natural frequency of interest and is given by:

with

2 — 0422 Cigﬂi (87)
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Figure 8.10: Response of the structure with and without and RL shunt : P and Q are at the same
height when 6 =1

8.2.2 Resonant shunt circuit applied to a cantilever beam

We illustrate the use of a resonant shunt with the following example of a cantilever beam. The
beam has a length of 350 mm, a width of 25 mm and a height of 2 mm (Figure . Two pairs
of piezoelectric PIC' 255 patches of dimensions 50 mm x 25 mm z 0.5 mm are glued on each side
of the beam starting at the cantilever side . The nodes associated to the electrical DOFs of the
four patches are numbered respectively [10001 10002] for the patches next to the clamping side, and
[20001 20002] for the other pair situated next to it.

Pair 1

(nodes 10(;)01 -10002) 350 mm Tip displ\acement
\ \\
\ T 25 mm
\
50 mm 50 mm Pair 2

(nodes 20001 - 20002)

Figure 8.11: Cantilever beam with two pairs of piezoelectric patches

In d_piezo(’TutoPz shunt-s1’) , we start by generating the mesh (Figure [8.12)) and setting the
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damping in the model.

In d_piezo(’TutoPz shunt-s2°’) , in order to implement the shunt, we will compute the capacitance
curve of the first set of patches used in phase opposition (bending) and extract the OC and SC first
natural frequency of the cantilever beam. In order to do that, we define two combinations of patches
for actuation (bending using the first pair in opposition of phase, and bending using the second pair
in opposition of phase), one combination of charge sensors in opposition of phase (to compute the
capacitance of the first pair), and one sensor for tip displacement (Figure .

Figure 8.12: Mesh of the cantilever beam showing the two pairs of piezoelectric patches on the left,

next to the clamp

In d_piezo(’TutoPz shunt-s3’) , we can now compute the response of the structure to the two
bending actuators using a reduced state-space model with 30 modes. The response of the combina-
tion of charge sensors is the capacitance curve (Figure of the first pair of piezo patches used
in opposition of phase.

In d_piezo(’TutoPz shunt-s4’) , wy and €2y are extracted from this curve to compute «y, and Cis.
Note that because the model is in millimetres, the voltage is expressed in V' and the charge remains
in Coulombs, so that the capacitance is expressed in M F' (megaFarads) (see fe mat (’ convertSIMM’)
for details on the unit conversion when working in millimeters).
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Figure 8.13: Capacitance (Q/V) of the first pair of piezo patches in bending. The resonance cor-
responds to w; and the anti-resonance to €2;. (4o is the capacitance in the flat part after the
anti-resonance

%% Step 4 - Determine parameters for shunt tuning

% Extract wl and W1 and compute alpha_1

C=C1.Y(:,1);

% Find poles and zeros of impedance (1/jwC)

if “exist(’findpeaks’,’file’); warning(’Skipping step, signal toolbox’);
return;end

[pksPoles,locsPoles]=findpeaks(abs(1./C)); Wi=w(locsPoles);
[pksZeros,locsZeros]=findpeaks(abs(C)); wi=w(locsZeros);
% concentrate on mode of interest (mode 1)
Wi=w(locsPoles(1)); wil=w(locsZeros(1));
% Compute alpha for mode of interest
al=sqrt((W1"2-wl1"2)/W1~2);

% Compute Cs2 for mode of interest
ind1=1; i2=locsZeros(l); i3=locsZeros(2);
dw2=w(i3)-w(i2); wCs2=w(i2)+dw2/2;
[y,il=min(abs(w-wCs2)); Cs2=abs(C(1i));
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%% Determine shunt parameters (R and L) and apply it to damp 1st mode
% Tuning using Yamada’s rule

d=1; r=sqrt((3*al~2)/(2-a1"2));

L_Yam=1/d"2/Cs2/W1~2; R_Yam=r/Cs2/W1i;

In (d_piezo(’TutoPz shunt-s5’) ), we represent the FRF of the tip displacement due to bending
actuation on the second pair of piezos for the initial system and the system with the shunt (Fig-
ure |8.14). The shunt is implemented using the feedback function of the Control toolbox.

Vin-u2 no shunt
RL shunt

10

N
S
4

|tip-displ|

-
it
@

phase (w) [deg]
o

Frequency [Hz]

Figure 8.14: Tip displacement due to the bending actuator of the second pair of piezo patches with
and without shunt

%% Step 5 - Compute dynamic response with optimal shunt
w=linspace(0,40,1e3)*2%*pi;

Cl=gbode(sys,w,’struct’); Cl.name=’no shunt’;
C1.X{2}={’Qs’; tip-displ’}; %outputs
C1.X{3}={’Vin-ul’;’Vin-u2’}; %inputs

% Implement shunt using feeback - requires control toolbox - compute FRF
if “exist(’feedback’,’file’); warning(’Skipping step, control toolbox’);
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return;
end
A=tf([L_Yam R_Yam 0],1); % RL shunt in tf form
sys2=feedback(sys,A,1,1,1);
% qbode does not work with feedback so use freqresp from control toolbox
C=freqresp(sys2,w); a=C(:); C2=Cl; C2.Y=reshape(a,4,1000)’;

C2.name=’RL shunt’; C1.X=C2.X;

% Plot and compare curves
iicom(ci,’curveinit’,{’curve’,Cl.name,Cl;’curve’,C2.name,C2});
iicom(ci,’ch 4’); d_piezo(’setstyle’,ci);
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PIEZO RELATED FUNCTIONS

m_piezo
p-piezo
d_piezo

piezoelectric material property handling
piezoelectric volume and shell property handling
support for demonstration of piezo capabilities




m_piezo

Purpose
Material function for piezoelectric solids
Syntax

mat= m_piezo(’database name’)
pl = m_piezo(’dbval MatId -elas 12 Name’);

See|d_piezo Tutolfor tutorial calls. Accepted commands are

[ Database, Dbval] [-unit TY] [,MatiD]] Name

m_piezo contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.

Piezoelectric materials are associated with two material identifiers, the main defines the piezoelectric
properties and contains a reference ElasMatId to an elastic material used for the elastic properties
of the material (see m_elastic for input formats).

m_piezo(’info’) % List of materials in data base
% database piezo and elastic properties
pl=m_piezo(’dbval 3 -elas 12 SONOX_P502_iso’)

Theoretical details on piezoelectric materials are given in section 2 . The m piezo Const and
BuildConstit commands support integration constant building for piezo electric volumes integrated
in the standard volume elements. Element properties are given by p_solid entries, while materials
formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call uses an option
structure with fields

e .name of the form ProIdval+patchlName. For example ProId1+SmartM.MFC-P1.2814.
e MatId value for the initial MatId.
m_piezo(’patch’) lists currently implemented geometries. In particular

e Disk.Material.Geometry is used for generic circular patches. (Legacy Noliac.Material.Geometry
is used for circular patches by Noliac). The list of materials in the database is obtained with
m_piezo(’info’). Fields for the geometry are
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— 0D outer diameter (mm). This can be replaced by RC.

— TH Thickness (mm). To specify a milimiter fraction replace the . by and _. For example
THO_7 is used for TH=0.7 mm.

— ID inner diameter (mm) (optional for piezo rings).

— LC characteristic length for meshing (when mesher has hability to use the information)

e Rect.Material.Geometry is used for generic rectangular patches. SmartM.Material .Geometry
is used for rectangular patches by Smart Materials. Fields for the geometry are

— WI width (mm)

— LE length (mm)

— TH Thickness (mm). To specify a milimiter fraction replace the . by and _. For example
THO_7 is used for TH=0.7 mm.

— LC characteristic length for meshing (when mesher has hability to use the information)

Thus WI28LE14TH 2 is a 28 by 14 by 0.2 mm patch. The geometry can also be coded as
2814TH 2. See d_piezo(’TutoPzMeshingAuto’) for illustration.

The piezoelectric constants can be declared using the following sub-types

1:Simplified 3D piezoelectric properties

[ProId Type ElasMatId d31 d32 d33 epsiT eps2T eps3T EDTypel

These simplified piezoelectric properties can be used for PVDF, but also for PZT if shear mode
actuation/sensing is not considered (dg2y = dj5 = 0). For EDType==0 on assumes d is given. For
EDType==1, e is given. Note that the values of ¢ (permitivity at zero stress) should be given (and

not ).

2:General 3D piezo

[ProId Type ElasMatId d.1:18 epsT_1:9]
d_1:18 are the 18 constants of the [d] matrix (see section [2.1]), and epsT_1:9 are the 9 constants of
the [aT] matrix. One reminds that strains are stored in order zx,yy, 2z, yz, zx, yx.

3 : General 3D piezo, e matrix

[ProId Type ElasMatId e 1:18 epsT_1:9]
e_1:18 are the 18 constants of the [d] matrix, and epsT_1:9 are the 9 constants of the [aT] matrix
in the constitutive law (see section ).

See also
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p_piezo

Purpose
Property function for piezoelectric shells and utilities associated with piezoelectric models.
Syntax

mat= m_piezo(’database name’)
pl = m_piezo(’dbval MatId -elas 12 Name’);

See for tutorial calls. Accepted commands are

ElectrodeMPC

[model, InputDOF (end+1,1)]=p piezo(’ElectrodeMPC Name’ ,model,’z==5e-5); defines the isopo-
tential constraint as a case entry Name associated with FindNode command z==5e-5. An illustration

is given in section [8.1.2] .

Accepted command options are

e -Ground defines a fixed voltage constraint FixDof, V=0 on Name.
e -Input"InName" defines an enforced voltage DofSet,InName entry for voltage actuation.

e MatId« is used to define a resultant sensor to measure the charge associated with the electrode.
Note that the electrode surface must not be inside the volume with MatId<. If that is the case,
you must arbitrarily decompose your mesh in two parts with different MatId. You can also
generate this sensor a posteriori using ElectrodeSensQ, which attempts to determine the
MatIdz based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p piezo(’ElectrodeSens( 1682 (Q-Base’,model); adds a charge sensor called
Q-Base on node 1682. (See for theory).

For shells, the node number is used to identify the shell property and thus the associated
elements. It is reminded that entries must be duplicated when multiple patches are used.
For volumes, the [p_piezo ElectrodeMPC| should be first defined, so that it can be used to obtain
the electrode surface information.

Note that the command calls fe_case(’SensMatch’) so that changes done to material properties
after this call will not be reflected in the observation matrix of this sensor.

To obtain sensor combinations (add charges of multiple sensors as done with specific wiring), specify
a data structure with observation .cta at multiple .DOF as illustrated below.

For a voltage sensor, you can simply use a DOF sensor

model=fe_case(model, ’SensDof’,’V-Base’,1682.21).
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model=d_piezo(’meshULBPlate cantilever’); 7 creates the model
% If you don’t remember the electrode node numbers
r2=p_piezo(’ElectrodeDOF’ ,model)

% Combined charge

ri=struct(’cta’,[1 11,’DOF’, [r2{1:2,2}]1+.21, name’,’QS2+3’);
model=p_piezo(’ElectrodeSens(Q’ ,model,rl);
sens=fe_case(model, ’sens’) ;

% Combined voltage

ri=struct(’cta’,[1 1],’DOF’, [r2{3:4,2}]+.21, name’,’VS2+3’);
model=fe_case(model,’SensDof’,rl.name,rl);
sens=fe_case(model, ’sens’) ;sens.lab

ElectrodeDOF
p-piezo(’ElectrodeDof Bottom’,model) returns the DOF the bottom electrode. With no name
for selection p_piezo(’ElectrodeDof’,model) the command returns the list of electrode DOFs
based on MPC defined using the ElectrodeMPC command or[p_piezo|shell entries. Use ElectrodeDof . *
to get all DOF's.

ElectrodeView

p-piezo(’electrodeview’,cf) outlines the electrodes in the model and prints a clear text summary
of electrode information. To only get the summary, pass a model model rather than a pointer cf to
a feplot figure.

p-piezo(’electrodeviewCharge’,cf) builds a StressCut selection allowing the visualization of
charge density. You should be aware that only resultant charges at nodes are known. For proper
visualization a transformation from charge resultant to charge density is performed, this is known
to have problem in certain cases so you are welcome to report difficulties.

Electrode2Case

Electrode2Case uses electrode information defined in the obsolete Electrode stack entry to gener-
ate appropriate case entries : V_In for enforced voltage actuators, V_Out for voltage measurements,
Q_Out for charge sensors.

Electrodelnit

Electrodelnit analyses the model to find electric master DOF's in piezo-electric shell properties or
in MPC associated with volume models.

Tab
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Tab commands are used to generate tabulated information about model contents. The calling format
is p_piezo(’TabDD’ ,model). With no input argument, the current feplot figure is used. Currently
generated tabs are

e TabDD constitutive laws

e TabPro material and element parameters shown as java tables.

View

p-piezo(’ViewDD’ ,model) displays information about piezoelectric constitutive laws in the current
model.

p-piezo(’ViewElec ...’ ,model) is used to visualize the electrical field. An example is given
in section . Command options are DefLenwval to specify the arrow length, E1tSelwval for the
selection of elements to be viewed, Reset to force reinit of selection.

ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical definition as a
layered composite, see and an electrode definition with element property rows of the
form

[ProId Type MecaProld ElNodeIdl LayerIdl UNU1 ElNodeId2...]

e Type typically fe mat(’p_piezo’,’SI’,1)

e MecaProld : Prold for mechanical properties of element [p_shell 2| composite entry. The
MatId< for piezo layers must be associated with piezo electric material properties.

e E1NodIdl : NodeId for electrode 1. This needs to be a node declared in the model but its
position is not used since only the value of the electric potential (DOF 21) is used. You may
use a node of the shell but this is not necessary.

e LayerId : layer number as declared in the composite entry.

e UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section[3.2]. The following gives a sample
declaration.

model=femesh(’testquad4’); % Shell MatId 100 ProdId 110
% MatId 1 : steel, MatId 12 : PZT elastic prop
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model.pl=m_elastic(’dbval 1 Steel’);
% Sonox_P502 piezo material, sdtweb m_piezo(’Sonox_P5027)
model.pl=m_piezo(model.pl,’dbval 3 -elas 12 SONOX_P502’);

% ProId 111 : 3 layer composite (mechanical properties)
model.il=p_shell(model.il, [’dbval 111 laminate °’

’3 1e-3 0 ’ ... Y% MatID 3 (PZT), 1 mm piezo, O
’1 2e-3 0 ’ ... % MatID 1 (Steel), 2 mm
’3 1e-3 0’]); % MatID 3 (PZT), 1 mm piezo, O

% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683
model.il=p_piezo(model.il,’dbval 110 shell 111 1682 1 0 1683 3 0’);

p_piezo(’viewdd’,model) % Details about the constitutive law
p_piezo(’ElectrodeInfo’,model) % Details about the layers
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d_piezo

Purpose
Support function for piezoelectric demos.

contains a set of demonstration and meshing scripts. Use d_piezo to display tag list and
see available content.

Mesh

In order to call a specific meshing script, use d_piezo(’Mesh. ..’ ,options), for example

MeshPlate

Meshing utilities for the placement of piezoelectric patches on a supporting structure (flat plate for
now).
The options are specified in a structure with fields

e .list : defines a list of features to be introduced with columns giving name,LamSpec, Geo,
name laminate specification and shape options.

e .unit : gives the model unit (needed since patch dimensions are always given in mm).
The laminate specification string is composed of the following

e BaselId: gives the Prold of the base laminate which is then used to figure out the position of
patches.

e +Patch or -Patch to place a patch above or below the base laminate.

e Patch itself is a specification of a patch material and geometry. The list of implemented patch
can be obtained using m_piezo Patch|

e .In to specify that the patch has an enforced voltage.
The geometry /position specification string Geo can be

e a specification of the patch corner and orientation such as xc=.03 yc=.05 ang=30 if the patch
geometry is specified using the laminate specification.

e rect shapes [xc 1x nx yc ly ny alpha MatId ProId] where MatId and ProId are filled
automatically if not provided.

e circ shapes [xc yc rc 1lc (MatId ProlId)]
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e global 1x=.4 1ly=.3 1lc=.02 -Sens. The option -Sens generates a sensor entry correspond-
ing to normal displacement of the initial mesh. Alternatively you can add a sensor configuration
SensDOF entry see sdtweb(’sensor#scell’) or sdtweb(’sensor#sstruct’).

% Start by defining properties of the underlying laminate

mdl=struct(’Node’, [],’Elt’,[], ... % empty model
'pl’, ... % composite layer property
[1 fe_mat(’m_elastic’,’SI’,1) 42.5e9 .042 1490 3.35e9 .01],
’i1’, ... % laminate definition (6 layers at 0,90,0,90,0,90)

p_shell([’dbval 1 laminate 1 2.167e-4 0 1 2.167e-4 90 °
’1 2.167e-4 0 1 2.167e-4 90 1 2.167e-4 0 1 2.167e-4 90°1),
’unit’,’SI’);
RG=struct;
RG.list={’Name’,’Lam’,’shape’
’Main_plate’, mdl,’global 1x=.4 ly=.3 1lc=.02’
’Actl’,’Baseldl +SmartM.MFC-P1.2814 -SmartM.MFC-P1.2814.in’,’xc=.35 yc=.25 ang=30’
’Sen2’,’Baseldl +SmartM.MFC-P1.2814°,’xc=.03 yc=.05 ang=30’
’Sen3’,’Baseldl +Noliac.NCE51.0D25TH1’,’xc=.05 yc=.25"’
}s
cf=feplot;d_piezo(’MeshPlate’,RG);cf.mdl.name="Plate with piezo’;
p_piezo(’electrodeinfo’,cf.mdl.GetData)
matgui(’jil’,cf);matgui(’jpl’,cf); % Display properties

See d_piezo(’TutoPzMeshingAuto’) for more illustrations.
MeshBaseAccel

Other meshing scripts do not have options, and simply produce the mesh for a specific tutorial script
(see below). Run for example

model=d_piezo(’MeshBaseAccel’)}
without options. If no output if specified, the mesh is generated and plotted in the feplot window.

Tuto

All the tutorial scripts described in the documentation are available, and can be accessed either in
command mode or through a gui interface. To have access to the gui, run d_piezo(’tuto’) and
expand the demo script (+), the arrows allow to run the different steps separately.

To run a demo script in command line, just run d_piezo(’Scriptname’), or d_piezo(’Scriptname-sn’)
for a specific step (replace n by the step needed).

See section [I.1] for more details.
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