
SDT non-linear transient and HBM toolbox 0.3

User guide

Initially funded by CLIMA a project supported by Conseil régional d’Ile-de-France and BPI

Etienne Balmes

Guillaume Vermot des Roches

SDTools
44 rue Vergniaud
75013 Paris (France)
Tel. 33 +1 44 24 63 71

© Copyright 1991-2025 by SDTools.

Contents

1 Theory and reference 5

1.1 Non-linear system representation . 7

1.1.1 Strains, stresses, application of forces . 7

1.1.2 Jacobian computations . 9

1.2 Kinematics of non-linear systems . 9

1.2.1 Generalized non-linear springs . 9

1.2.2 Generalized non-linear surfaces . 11

1.2.3 Non-linear volumes . 11

1.2.4 Kinematic reduction, observation and hyperreduction 13

1.2.5 Manual definition of input and output (deprecated) 13

1.3 Non-linear constitutive laws . 14

1.3.1 Laws with no internal states, principles . 14

1.3.2 Tabular interpolation . 14

1.3.3 Laws with internal states . 15

1.3.4 Hyper-visco-hysteretic 0D model . 19

1.3.5 User callback in nl inout, MexCb field . 25

1.3.6 Dedicated user function (deprecated) . 26

1.3.7 .anonymous field for definition (deprecated) 26

1.3.8 Maxwell cell model using matrices (deprecated) 27

1.4 Hyper-visco 3D model . 29

1.4.1 Kinematics . 29

1.4.2 Invariants, strain rates . 30

1.4.3 Stress, equations of motion, time integration at a material point 31

1.4.4 Hyperelastic potential, polyconvexity . 32

1.4.5 Compression or volume change behavior . 33

1.4.6 Deviatoric laws . 34

1.4.7 Mixed U-P elements small deformation . 35

1.4.8 Cross check examples . 37

1.4.9 Mixed U-P elements large deformation . 38

1

2 CONTENTS

1.4.10 Viscoelastic implementations . 39
1.5 Transient solution of non-linear equations . 39

1.5.1 Principles . 39
1.5.2 Enforced displacement, resultants . 41
1.5.3 Definition of an underlying linear system . 42

1.6 Data structures for non-linearities in time . 42
1.6.1 NLdata non-linearity definition (model declaration) 42
1.6.2 Additional fields in model . 44
1.6.3 NL structure : non-linearity representation during time integration 45

1.7 Harmonic balance solutions and solver . 47
1.7.1 Time/frequency representation of solutions/loads 47
1.7.2 Harmonic balance equation (real DOF) . 49
1.7.3 Complex formulation and equivalent stiffness 51
1.7.4 Inter-harmonic coupling discussion . 52
1.7.5 Harmonic load definition . 53

1.8 Data structures for HBM solvers . 55
1.8.1 Model, superelement . 55
1.8.2 Non-linearity definition NLdata . 57
1.8.3 NL structure non-linearity representation during HBM solve 57
1.8.4 Solver options definition . 58
1.8.5 Option structure during HBM solve . 60
1.8.6 Harmonic result structure . 61

2 Tutorial 63
2.1 Installation . 64
2.2 Frequency domain test cases . 65

2.2.1 Example lists . 65
2.2.2 Spring mass examples . 65
2.2.3 Beam problem with local non-linearity . 66
2.2.4 Lap joint problem with contact . 67
2.2.5 Hyperelastic bushing . 68

2.3 Time domain test cases . 68
2.3.1 Single mass test of various non-linearities . 68
2.3.2 Single mass stepped sine . 69
2.3.3 CBush with orientation . 69
2.3.4 Beam with non-linear rotation spring . 70
2.3.5 Lap joint with non-linear springs . 70
2.3.6 Parametric experiments in time . 70

2.4 Elastic representation as superelements . 71
2.4.1 NASTRAN cards used for sensors/non-linearities 71

CONTENTS 3

2.4.2 ABAQUS cards used for sensors/non-linearities 72

2.4.3 ANSYS cards used for sensors/non-linearities 72

2.4.4 Storing advanced SDT options in bulk format 73

2.5 Squeal related examples . 74

2.5.1 Post-processing test signals . 74

2.5.2 CEA . 74

2.5.3 NL time transient on reduced bases . 74

2.6 Advanced usage . 74

2.6.1 DOE & general organization in steps . 74

2.7 External links . 75

3 Contact modeling, theory and implementation 77

3.1 Modeling contact friction interactions . 78

3.1.1 Ideal Signorini-Coulomb model . 78

3.1.2 Functional representation of contact pressure 80

3.1.3 Regularized friction models . 82

3.2 Numerical implementation . 84

3.2.1 Contact friction between 3D surfaces . 84

3.2.2 Eulerian sliding formulation . 86

3.2.3 Frequency domain linearization . 89

3.2.4 Surface Contact with large displacement . 92

3.2.5 Line contact for large displacement . 92

3.3 Implemented contact and friction laws (SDT contact) 92

4 Function reference 99

d hbm 101

d tdoe 102

hbmui 103

hbm post 110

hbm solve 114

hbm utils 122

nl spring 124

mkl utils 137

chandle 139

Non linearities list 141

nl inout 143

Non linearities list (deprecated) 146

Creating a new non linearity: nl fun.m 158

nl solve 161

nl mesh 169

4 CONTENTS

spfmex utils 177
nl bset 178
ctc utils 179
p contact,nl contact 188

Bibliography 201

Index 204

1

Theory and reference
s*theory

Contents

1.1 Non-linear system representation . 7

1.1.1 Strains, stresses, application of forces . 7

1.1.2 Jacobian computations . 9

1.2 Kinematics of non-linear systems . 9

1.2.1 Generalized non-linear springs . 9

1.2.2 Generalized non-linear surfaces . 11

1.2.3 Non-linear volumes . 11

1.2.4 Kinematic reduction, observation and hyperreduction 13

1.2.5 Manual definition of input and output (deprecated) 13

1.3 Non-linear constitutive laws . 14

1.3.1 Laws with no internal states, principles . 14

1.3.2 Tabular interpolation . 14

1.3.3 Laws with internal states . 15

1.3.4 Hyper-visco-hysteretic 0D model . 19

1.3.5 User callback in nl inout, MexCb field . 25

1.3.6 Dedicated user function (deprecated) . 26

1.3.7 .anonymous field for definition (deprecated) 26

1.3.8 Maxwell cell model using matrices (deprecated) 27

1.4 Hyper-visco 3D model . 29

1.4.1 Kinematics . 29

1.4.2 Invariants, strain rates . 30

1.4.3 Stress, equations of motion, time integration at a material point 31

1.4.4 Hyperelastic potential, polyconvexity . 32

1.4.5 Compression or volume change behavior . 33

1.4.6 Deviatoric laws . 34

1.4.7 Mixed U-P elements small deformation . 35

1.4.8 Cross check examples . 37

5

1.4.9 Mixed U-P elements large deformation . 38

1.4.10 Viscoelastic implementations . 39

1.5 Transient solution of non-linear equations 39

1.5.1 Principles . 39

1.5.2 Enforced displacement, resultants . 41

1.5.3 Definition of an underlying linear system 42

1.6 Data structures for non-linearities in time 42

1.6.1 NLdata non-linearity definition (model declaration) 42

1.6.2 Additional fields in model . 44

1.6.3 NL structure : non-linearity representation during time integration 45

1.7 Harmonic balance solutions and solver 47

1.7.1 Time/frequency representation of solutions/loads 47

1.7.2 Harmonic balance equation (real DOF) . 49

1.7.3 Complex formulation and equivalent stiffness 51

1.7.4 Inter-harmonic coupling discussion . 52

1.7.5 Harmonic load definition . 53

1.8 Data structures for HBM solvers . 55

1.8.1 Model, superelement . 55

1.8.2 Non-linearity definition NLdata . 57

1.8.3 NL structure non-linearity representation during HBM solve 57

1.8.4 Solver options definition . 58

1.8.5 Option structure during HBM solve . 60

1.8.6 Harmonic result structure . 61

1.1. NON-LINEAR SYSTEM REPRESENTATION 7

1.1 Non-linear system representations*nlconst

1.1.1 Strains, stresses, application of forcess*nlGenStrain

One is interested in solving equations of the general form

[M] {q̈}+ [C] {q̇}+ [K] {q(t)}+ FNL(q, q̇, qNL, ω, t) = Fext(ω, t) (1.1) eq*nl_mcktime

with

� q the finite element DOFs (full or reduced)

� M,C,K the mass, viscous damping, and stiffness matrices respectively

� Fext the external forces with the sign convention that they are written on the right hand side

� FNL the non-linear forces internal to the system (sign convention on the left hand side of
the equation) which may depend on the FEM motion described by its generalized strains and
possibly strain rates defined below.

� When internal states are necessary (friction, plasticity, ...), they are stored either as generalized
strain components or DOF and additional equations are provided to model their evolution.

Estimation of the non-linear forces can, in a very general fashion, be decomposed in three steps: ob-
servation of strains, evaluation of constitutive law at a material point to compute stresses, application
of stresses on the model as detailed below.

� Observation of non-linear strains is the first step

{ϵ(t)} = [c] {q(t)} (1.2) eq*nl_ycq

where strains may represent quantities dependent on the model displacement (relative motion,
mechanical strain, ...), but also possibly internal states of the non-linearity if those are included
in the definition of q. For HBM solutions qNL will be assumed to be part of q but for transient
simulations this may not be optimal.

Strategies for the construction of the observation matrix c will be discussed for point to point
connection in section 1.2.1 , surfaces in section 1.2.2 , volumes in section 1.2.3 .

For time domain, generalized strains ϵ (noted .unl in the code) are obtained by computing

unl = [c] {q}+ unl0 (1.3) eq*nl_unl

In a similar fashion, if the NL.vnl field exists strain rates are obtained using

vnl = [c]
{
q′
}
+ vnl0. (1.4) eq*nl_vnl

8 CHAPTER 1. THEORY AND REFERENCE

In the implementation, the strain vector may have NE components ei, and strains at NG ma-
terial points (Gauss or physical points) may be stored as a single vector to allow vectorization
of non-linearities of a given kind, thus leading to ei,gk components.

For HBM computationsNT times will be evaluated and stored as columns. The internal storage
in field NL.unl is thus of the form

{unl}(NE×NG)×NT
= {ϵ}gauss repeat×time =


e1,g1(t1) e1,g1(t2) . . .
e2,g1(t1) . . .

...
e1,g2(t1) . . .

...

 (1.5) eq*nl_unlg

� From the observed strains, a constitutive law is used to estimate stresses (or generalized
forces), as will be discussed in section 1.3 from data present in the NL.Fu field,

{snl(t)} = F ({ϵ(t)} , {ϵ̇(t)}) (1.6) eq*nl_sfu

The generic representation of non-linearities should verify classical assumptions on objectivity
and on the validity of constitutive relations, which is compatible with the idea that generalized
strains are defined at a material point.

The definition of a non-linear constitutive relation giving a definition of generalized stresses
snl which has the same (NE ×NC) ×NT size as unl and is thus stored NL.unl field to allow
overwrite. This allows memory optimization even though the output result is a force and not
a strain). When internal states are present, the strain field NL.unl may not be efficiently used
to store stresses, it is then possible to store stresses in field NL.snl of size (NS ×NG) ×NT)
with NS the number of stress components.

� Finally stresses can be applied on the model to obtain the model forces in the discretized
model associated with DOFs q. That is

{−Fnl} = [b] {snl} (1.7) eq*nl_fnlbs

where the field NL.snl may be defined or, in cases with no internal states, it is possible to
optimize memory by storing snl in NL.unl.

In the proposed framework,

� internal states of a non-linearity are expected be included within the generalized strains. For
a time computation unl will thus be of size (NE + Nint) × Ng (×NT in the case of HBM
computations). See section 1.3.3 for more details.

1.2. KINEMATICS OF NON-LINEAR SYSTEMS 9

� It is generally useful to store current unl(tn), initial unl0 and previous unl(tn−1) values as
consecutive blocks in NL.unl(:,:,1), NL.unl(:,:,2), NL.unl(:,:,3).

� In many instances the observation c and command b matrices can be considered constant, but
for contacts with large relative displacements they may need to be considered as operators
depending on the model state and thus modified dynamically using C code.

1.1.2 Jacobian computationss*nljacobian

Many iterative schemes need derivatives of the non-linear forces with respect to strains (stiffness)

kj = [b]

[
∂snl
∂unl

]
[c] (1.8) eq*nl_jackj1

or strain rates (damping matrix)

cj = [b]

[
∂snl
∂vnl

]
[c] (1.9) eq*nl_jaccj

See nl spring NLJacobianUpdate for low level documentation and nl solve TgtMdl for global
calls. The derivatives at each integration point (often named Gauss point in the documentation)
∂snl
∂unl

correspond to the material stiffness matrix called dd or Lambda in different parts of SDT. Since
the b and c matrices combine all gauss points, the assembled matrix containing one block for each
gauss point, is sometimes stored in a ddg field when individually modifying the gauss points is of
interest (topology optimization applications for example).
When splitting of Jacobians is of interest xxx.

1.2 Kinematics of non-linear systemss*nlkin

1.2.1 Generalized non-linear springss*nlio1d

The simplest example is the observation of unaxial springs oriented along vector {d} where the
generalized strain is the relative displacement

dq =
[
−{d}T {d}T

]


u1
v1
w1

u2
v2
w2


(1.10) eq*nl_iospring

The non-linear implementation of the OpenFEM cbush element provides 6 generalized strains at a
given location corresponding to relative translations and rotations. For EDID==-1 this is with respect
to a local basis B = [xe ye ze].

10 CHAPTER 1. THEORY AND REFERENCE

(1− s)l

sl

n2

n1

bush

xe

ye

ze v



du
dv
dw
ru
rv
rw


NE×1

=

[
−BT 0 BT 0
0 −BT 0 BT

]



u1
v1
w1

ru1
rv1
rw1

u2
v2
w2

ru2
rv2
rw2



(1.11) eq*nl_iobush

Initialisation of non-linear behavior in a cbush element group is performed when the NLdata property
contains fields

� type=’nl inout’ to let hbm solve InitHBM build the needed observation matrix

� Fu=’@UserFun’ references a user function computing the non-linear force with the prototype
call described in section 1.3.6

� .isens can be used to apply non-linearity in some directions only.

A sample problem with cbush can be found in section 2.3.3 .
When considering non small angular rotations of the two nodes, the orientation basis in (1.11) cannot
be considered considered constant. It is thus necessary to express motion of each part at the bushing
node using large rotations

{xiB(t)} = {xi(t)}+ [Ri(t)] {xiB(0)− xi(0)} (1.12) eq*nl_iobushlr

In non-linearities that implement such large rotation, SDT expects that the bushing frame is
associated with the first node and that motion of the bushing node associated with the second.

1.2. KINEMATICS OF NON-LINEAR SYSTEMS 11

Thus the relative translation in first node frame is given by

[R1(t)]
T {x2B − x1B} = [R1(t)]

T {x2(t)− x1(t)− x1(0) + x1B(0)}+[R1(t)]
T [R2(t)] {x2B(0)− x2(0)}

(1.13) eq*nl_iobushlr2

For rotational springs at the bushing, there is no obvious large rotation formulation. The current
implementation uses the difference of angles even though this does not always make sense.

1.2.2 Generalized non-linear surfacess*nlio2d

Zero thickness elements which provide 3 generalized strains which correspond at each gauss point
to the relative motion of two surfaces in the normal and two tangential directions are implemented
in p zt. When an NLdata field is defined a vectorized non-linearity is initialized.
Contact elements, implemented in p contact have an objective similar to that of zero thickness
element but allow the handling of non-conform meshes. Subtype 1 does not account for large
displacement so that matching can be performed once and kept constant during time. Subtype 2
allows for relative motion of two bodies (wheel moving on a rail for example) and currently only
works for matching to triangular surfaces.

1.2.3 Non-linear volumess*nlio3d

SDT implements observation of strains in configurations where no geometry updating is needed
using StressCut calls. This strategy is compatible with all physics (acoustics, piezo-electricity, ...)
and can also be used for shells (to observe membrane strains and curvature) and beams (to observe
axial elongation, shear, torsion and curvature).
For volumes, the choice of strain is obtained using the p solid Isop parameters. For explicit
mechanics in large deformation, the displacement gradient is used and obtained using Isop=100.
For generic implementation of multi-physic non-linear volumes, a generalized strain giving the dis-
placement and its gradient for each field. For a field with 3 components at N nodes

{eMP }12 =



u1
u1,j
u2
u2,j
...


12

=



N 0 0
N, x 0 0
N, y 0 0
N, z 0 0
0 N 0
0 N, x 0
0 N, y 0
0 N, z 0
0 0 N
0 0 N, x
0 0 N, y
0 0 N, z




u1(n1)
u2(n1)
u3(n1)

...


3N

= [BMP (r, s, t)]12×3N {uin}3N

(1.14) eq*nl_io3da

12 CHAPTER 1. THEORY AND REFERENCE

As a an example, the standard linearized mechanical strain

ϵx
ϵy
ϵz
γyz
γzx
γxy


=



N, x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N, x
N, y N, x 0




u
v
w

 = [BEp]6×3N {uin}3N (1.15) eq*nl_io3db

can be related to the generic multi-physic strain using a transformation matrix TEp

[BEp]6×3N =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 0 0

 [BMP]12×3N = [TEp] [BMP] (1.16) eq*nl_bep

The usual mechanical stiffness can thus be reformulated using BMP

Ke =

∫
Ω
[BEp]

T [D] [BEp] dΩ =

∫
Ω
[BMP]

T [T TEpDTEp] [BMP] dΩ (1.17) eq*nl_matstiff

A generic non-linear multiphysic constitutive law is a function that will receive a NL structure with
fields

� .unl a series of generic strain emp at each Gauss points thus a matrix with 4*Nf*Ng rows
(4 components per field, repeated for each gauss point), and possibly multiple columns for
different times.

� .vnl a series of strain velocities (time derivative of strain)

� .nodeGmatrix of size Nfield * Ng containing interpolated fields (typically positions x, y, z, un1
but possibly also v1x,v1y,v1z for first orientation axis), .nodeEt is an int32 vector coding
the name of each field.

� .MatType list of matrix types for which the tangent constitutive law is given.

� .constit contains the constant parameters read from model.pl.

From this information the function should return a structure with field

� .unl generic stresses a matrix with 4*Nf*Ng rows and Nt columns. The name should really be
.fnl but the same field name .unl is used to allow memory reuse.

1.2. KINEMATICS OF NON-LINEAR SYSTEMS 13

� .MatType propagated version of input field.

� .DD a matrix of size ones(4*Nf,4*Nf,Ng,length(NL.MatType)) giving the tangent constitu-
tive law for each Gauss point and each desired matrix type. This corresponds to the T TEpDTEp
in (1.17).

1.2.4 Kinematic reduction, observation and hyperreductions*nlbcred

Once a kinematic reduction defined, where {q} = [T] {qR} is defined, non-linear observation and
command matrices are simply reduced using cR = c ∗ T and bR = T T b.
For resultant observations, the strategy is however more complex. In a frequency domain model,
the resultant is associated with ZI(p, s) the dynamic stiffness restricted to an interface

RI == [cI] [ZI(p, s)] {q(ω)} = [cI]
[
Ms2 +

∑
αpMp

]
{q(ω)} (1.18) eq*nl_resobsfreq

so that the coefficients of the observation depends on frequencies and parameters involved in ZI(p, s).
In SDT, such linear combinations are described in zcoef. Taking the case of a bushing where
[ZI] = E(ω, a) [Ku], the resultant observer is simply given by [cI] [ZI] = E(ω, a) [cIKu].
When the observer is built around an operating condition where large displacement has occurred,
the observation matrix may depend on the current position c(x). For example, the elongation of a

large rotation rod is given by dl(t) =

√
{u2 − u1}T {u2 − u1}− l0, so that the linearized observation

is given by

dl(t) = {ei(u0)}T {ui2 − ui1} =
1

∥u2(0)− u1(0)∥
{u2(0)− u2(0)}T {ui2 − ui1} (1.19)

For the case of resultant observation in enforced displacement problems, RI(t) = [TI]
T F (t), the

reduced equations of motion give an estimate of FR(t) and not FT , thus T
T
IR should be used when

observing.
Hyperreduction is a strategy where kinematic reduction is combined with selection of a subset of
non-linear integration points based on criteria on the work of reduced model. Thus from a set E of
Gauss points where each non-linear strain is described by ugnl = [cg] {q}, one restricts to a subset
EHR. Needs more details.

1.2.5 Manual definition of input and output (deprecated)s*nlbc

While the general approach is to associate non-linearities with strains in elements as described in
the following sections, it is possible to define a pro.NLdata structure giving

� .b,.c : manual command and observation definition. If the NLdata.DOF field is defined,
placement of the observation matrix in done during the model assembly phase assuming .DOF

14 CHAPTER 1. THEORY AND REFERENCE

correspond to mdof (projection with the Case.T matrix, c ∗ T ,is done). If one want to define
NL on active DOF, one will provide .adof field (rather than .DOF field): then c is assumed to
be defined on active dof, and a simple placeindof is done. If there is no NLdata.DOF field, .c
and .b matrices are assumed to be on mdof, and projected using Case.T. For storage during
solves, see .b.

� .Sens,.Load Alternate form for .b, .c giving command and observation matrices as .Sens
cell array of the form {SensType,SensData} where SensType is a string defining the sensor
type and SensData a matrix with the sensor data (see sdtweb sensor). .Load data structure
defining the command as a load (with .DOF and .def fields).

1.3 Non-linear constitutive lawss*nlfu

While implementation of non-linear kinematics is fairly generic, users typically want to implement
their own constitutive laws relating stresses to strains and possibly their history.

1.3.1 Laws with no internal states, principless*nlfubase

Constitutive laws where the stress only depends on strain and strain rate are the simplest. These
laws exploit the framework provided by nl inout for various element types.
The only thing that needs to be implemented is a .Fu function

{snl(t)} = F (unl, vnl) (1.20) eq*nlconst1

During time/frequency evaluations it is essential that such evaluations be very fast, this has an
impact on implementation and different strategies are implemented

� tabular section 1.3.2 .

� dedicated user function section 1.3.6 (deprecated).

� anonymous function defined with parameters section 1.3.7 (deprecated).

1.3.2 Tabular interpolations*nltabular

sdtweb(’_eval’,’d_fetime.m#BumpStop’)

opt=d_fetime(’timeopt dt=1e-4 tend=.1’);opt.Method=’Back’;

model=fe_time(opt,mdl)

Multiple forms are supported. Currently a cell array of

1.3. NON-LINEAR CONSTITUTIVE LAWS 15

� tabulated Fu (used in nl inout FuTable), ie 1st column is the observed strain (relative dis-
placement), 2nd column Fu1 is the corresponding stress (load). A third column Fu2 is inter-
preted as a coefficient applied to computed non linear load associated to velocity (Fv) (it is
used for example in bumpstops to take in account a damping with offset on the displacement).
Thus snl = Fu1(unl) + Fu2(unl)Fv(vnl).

When each non-linearity has 3 strains, this is interpreted as contact. You are expected to have
non-linear kinematics giving strains as normal component followed by two tangent directions.
Thus s1 = Fnormal = Fu1(u1) and s2 = FTangent1 = Fu2(u1)Fv(v2) s3 = FTangent2 =

Fu2(u1)Fv(v3).

When storing constitutive laws in tabular form, it is desirable to follow the SDT curve format
giving the the variable names on which the function depends in the .Xlab fields, abscissa in
the .X and values in the .Y field.

� numeric curve ID for a curve in the stack.

� string defining a predefined law, listed using nl spring(’guilist’).

For Jacobian computations by nl spring NLJacobianUpdate, one uses xxx
Supported data input forms

� BumpStop dp dp kp kp cp cp dm dm km km cm cm (a bumpstop example can be found in
sdtweb t nlspring(’BumpStop’). dp is the upper gap of the bumpstop, kp the upper stiffness,
and cp the upper damping, then dm km and cm the same for the lower gap. This bump stop
law (as friction law) is built in nl spring Tab which is the historical implementation : there
is a known approximation, the stiffness is applied from du = dp ∗ 1.001 to du = 1 (so that the
slope is not exactly kp), and damping from du=dp. The same for lower gap.

� Friction f f c0 c0, where f is the friction load, and c0 is a damping coefficient applied on
the transition around 0 velocity (c0 is typically important). Dry frictions are known to be
responsible for convergence problems.

� gapCylI inner cylinder within an external sleeve.

� ctcFric penalized contact and friction implementation

1.3.3 Laws with internal statess*constintern

Classical rheologic model exploit internal states to account for hysteresis phenomena. E.g. The
elasto-visco-plastic behavior is shown in figure 1.1 In this case one internal state is required to
represent the relative force between both extremities, to keep track of the relative displacement
between the middle spring and middle dashpot.

16 CHAPTER 1. THEORY AND REFERENCE

Figure 1.1: Elastic-visco-plastic model fig:hbmlaw1

Very complex models can be associated to this kind of representation, where one will implement
internal dynamics associated to a strain history. The general formulation of such system is given as

fNL = F ({q} , {q̇} , {z} , {ż} , t) (1.21) eq*CFI_CM_ContFric_ftgeneq

and the internal states evolution equation functional

{ż} = G ({q} , {q̇} , {z} , t) (1.22) eq*CFI_CM_ContFric_ftzgeneq

where {z} is a vector of internal states, {q} the displacement vector and ẋ represent the time
derivatives.
Equations (1.21) and (1.22) represent the class of so-called state space models (for example in the
80’s for geophysics applications, in particular by Rice and Ruina

rice_1983
[1]).

Internal state representation can be based on the need for an efficient implementation and on the
fact that the first order dynamics laws defined by equations (1.21) and (1.22) do not comply with a
second order based resolution framework (the internal states acceleration is seldom defined).
Equation (1.22) can thus be resolved separately, possibly with a sub-integration scheme and an
adequate interpolation of the external states.
In the non-linearity framework internal states are stored in the continuity of the generalized strains
per Gauss points in field .unl. A single non-linearity only handles a single topology and a single
internal model, so that each Gauss point has the same number of strain observations and internal
states. The field .unl is then of size ((NE +NI)×NG)×NT . The internal storage in field NL.unl

1.3. NON-LINEAR CONSTITUTIVE LAWS 17

is thus of the form

{unl}((NE+NI)×NG)×NT
= {ϵ}gauss repeat×time =



e1,g1(t1) e1,g1(t2) . . .
e2,g1(t1) . . .

...
e1,g2(t1) . . .

...
e1,i1(t1)

...


(1.23) eq*nlconst2

This formalism keeps vectorization capability per instant. The internal rate states are stored in the
same manner.
Strain history is stored in the �third dimension .unl(:,:,jh). In general for time integration, one
will use

� .unl(:,:,1) to store the current strains of the form (1.3)

� .unl(:,:,2) for the initial strains unl0

� .unl(:,:,3) to store unl,t−1 the strains at the previous step

When performing a residual call, it is efficient to combine time stepping (1.22) and state update.
The StoreType parameters controls what the StoreState C function does.

� StoreType=01 single step computation of residual and update of internal states in unl. The
memory buffer of .unl(:,:,1) is first filled using (1.3) but assuming that internal states
have not changed. The residual function computes a step replacing the data in .unl(:,:,1).
StoreState (done at end of Fu) copies .snl to .FNL . Copy of internal states to unl(:,:,2)

can be done by controlled by the Fu (this is in particular is done in the StoreState C++
function when �upUnl2=RO.jg[2]=2 is used).

� StoreType=02 stores internal states in .FNL rather than .snl.

� StoreType=03 same as 01 but StoreState stores the full .snl vector followed by the full
.unl(:,:,1). Beware that, this can be quite memory intensive.

� StoreType=04 used for enforced motion. Modifies the displacement and velocity buffers.

� StoreType=1.. if the hundreds digits is set to 1, .vnl is assumed not used and thus the
associated buffer is emptied. xxx need discuss xxx

18 CHAPTER 1. THEORY AND REFERENCE

When .iopt(1)=FInd is positive, .snl is copied as a consecutive vector to model.FNL assuming
the field exists. When .iopt(2)=iu is positive, internal states are copied consecutively to the
displacement vector u with offset iu. This is done for Ng=.iopt(5) gauss points while skipping
Nstrain=.iopt(3) components and copying Nistate=.iopt(4).
only the previous state is needed to integrate internal state evolution, as offset unl0 is already stored
in the third dimension, unl,t−1 is found in the third index.
DOF representation of internal states

The number of internal states depends on the model and thus must be declared in the non-linearity.
One must then declare in NLdata the fields .adofi and field .MatTyp to obtain a proper initialization
of .unl field and associated observations in nl inout.

� Internal states are defined independently for each observation line used in the non-linearity.
e.g. for a cbush six directions are available relative to the 3 translations and 3 rotations that
can be observed. .adofi is then a line cell array of length the number of observations (6 here).
Each cell defines a number of internal states associated to the corresponding observation in-
dex by providing a column vector with as many lines as internal states used each containing
the DOF extension .99. The cell is left empty if no internal state is declared for a particular
direction.

Thus NLdata.adofi={[];[];[];[];[];.99} will add an internal state to the 6th observation
of the non-linearity.

.99 adds the internal state as an additional DOF, while -.99 uses an FNL internal state.

� Field .adofi must be either a one column vector/cell (Gauss point wise replication is sup-
ported) or should feature as many columns as expected Gauss points for the non-linearity.

� For a volume element in large transformation, 9 components of stress gradient are observed.
.adofi=zeros(18,1)+.99 will interlace 18 internal states with the observation at each Gauss
point.

By default, one should let initialization procedures allocate DOF identifiers to each internal states
by only providing a DOF extension in .adofi. If internal states have a physically defined nodal
support, it is also possible to provide the corresponding DOF instead of just an extension. Beware
that these DOF should not be coupled to the elastic model, as external resolution would interfere
with the internal dynamics. Internal DOF replication for each Gauss point is automatically carried
out if a single column is provided.
To allow clean representation and access to internal states, the global model DOF are automatically
augmented with DOF associated to internal states. One can then decide whether to keep them

1.3. NON-LINEAR CONSTITUTIVE LAWS 19

or not during the resolution phase by setting positive (kept) or negative (eliminated) signs to the
non-empty values in .adofi. To simplify for a given non-linearity all internal states are either kept
or not, any negative value will then switch to elimination. In the case where internal states are kept
during the resolution displacement and velocity states are automatically updated in the model.
HBM solvers specificity

HBM formulations have a resolution approach that is different from usual transient simulations that
usually require to write separate dedicated functions for both resolution strategies.
In transient simulations, strain history is available, so that one first integrates internal states defined
by equation (1.22), and then computes the non-linear forces with equation (1.21).
In HBM based formulations the steady state response state is assumed in the prediction/correction
scheme, including strain history. Internal states coefficients are thus predicted, so that the cor-
responding non-linear force defined inequation (1.21) is directly obtained. One then updates the
internal states evolution equation (1.22) for convergence iterations. Internal states DOF must thus
be kept in the resolution phase.

1.3.4 Hyper-visco-hysteretic 0D models*uMaxw

For the representation of bushings, each Gauss point is a scalar (0D) constitutive law that considers a
combination of hyperelastic (red curve in figure 1.2), rate independent hysteresis (green curves from
low speed triangular testing), and viscoelastic behavior (blue to yellow maps denoting frequency and
amplitude dependence from sine testing).

20 CHAPTER 1. THEORY AND REFERENCE

Figure 1.2: Tangent hyperelastic stiffness (red), hysteretic relaxation modulus (green), viscoelastic
complex modulus (blue to yellow) f:0Dprinciple

The total load is a series of forces/stresses

F =

Ncell∑
i=0

F i (1.24) eq*uMaxHE

where hyperelasticity is represented using a tabular form with either linear of piecewise cubic inter-
polation with no internal states F 0

g (ug) (stored as NLdata.Fu{k})and other behavior is represented
using a series of cells (also called branches in reference to the classical rheologic representation of
figure 1.3), specified using a field .cell where each row describes a branch indexed by i with [ty

gi fi xfi ai] type, load fraction, and if used frequency in Hz , sliding distance, non-linearity co-
efficient. xxx Note that the convention is to declare constants using a fraction of the high frequency
modulus

g0 +
∑
i

gi = 1 (1.25)

but when starting relaxations from the low frequency stresses, the coefficient gi/g0 is more relevant
and that coefficient only needs to be positive.

1.3. NON-LINEAR CONSTITUTIVE LAWS 21

Currently supported types

� 4 stress rate relaxation (adds high frequency branches) with Lion transition between viscous
and hysteretic behavior (for non-zero xfi). A relaxation frequency fi = ωi/2π = Ki/(ci2π), a
load fraction gi = Ki/K∞, and a saturation distance xfi (stored in a NLdata.Fu{k}.cell row
containing [8 gi fi(Hz) 1/xfi(1/disp,strain)]) are used for the differential evolution law

Ḟ i + F i
(
ωi +

|u̇|
xif

)
= − gi

g0
Ḟ 0 (1.26) eq*uMaxdSrelSimo

For the linear case, the following illustrates the contributions of branches in the frequency
domain.

K0

x, F

c1K1

x1, F 1

. . .

cNKN

xN , FN

10-2 10-1 100 101 102

Frequency [Hz]

0.2

0.4

0.6

0.8

S
to

ra
ge

 m
od

ul
us

 [N
/m

m
] Cell at 6Hz

Cell at 1Hz
Cell at 1/6Hz
Full model
Elastic cell

Figure 1.3: Generalized Maxwell model and associated frequency domain response. Stress/strain
rate relaxation model adds s/(s + ωj) with non-zero high frequency contribution (orange to blue
contributions in the plot). f:maxwell_cell

An implicit approximation of the differential equation given by

F i(tn+1)− F i(tn)

dt
+
(
ωi +

|u̇|
xif

)
F i(tn+1) =

gi

g0
F 0(tn+1)− F 0(tn)

dt
(1.27) eq*uMaxdSrelSimoB

leading to fixed time step increment equation

F i(tn+1) =

F i(tn) +
gi

g0
(
F 0(tn+1)− F 0(tn)

)
1 + dt

(
ωi +

|u̇|
xif

) (1.28) eq*NLUMAXW_VISCSTRESSRATEb

Alternatively an explicit approximation in F i with F 0(tn+1) known

F i(tn+1)− F i(tn)

dt
+
(
ωi +

|u̇(tn)|
xif

)
F i(tn) =

gi

g0
F 0(tn+1)− F 0(tn)

dt
(1.29) eq*uMaxdSrelSimoC

22 CHAPTER 1. THEORY AND REFERENCE

leading to fixed time step increment equation

F i(tn+1) = F i(tn)− dt
(
ωi +

|u̇(tn)|
xif

)
F i(tn) +

gi

g0
(
F 0(tn+1)− F 0(tn)

)
(1.30) eq*NLUMAXW_VISCSTRESSRATE

xxx recheck

� 1 viscoelastic relaxation of strain removes low frequency branches −gi/(s/ωj+1) from the total
response. Using one internal state ui associated with each Gauss point, a relaxation frequency
fi = ωi/2π = Ki/(ci2π) and a load fraction gi = Ki/K∞ (stored in a NLdata.Fu{k}.cell
row containing [1 gi fi(Hz) 0]), the evolution is described by

u̇i

ωi
= (u− ui) and F i = (K∞gi)(u− ui) = (K∞gi)

(
1− 1

s/ωi + 1

)
u (1.31) eq*uMaxUrel

Note that F 0 is here the high frequency asymptote. The implicit increment equation uses
ui(tn+1)(1 + ωidt) = ωidt u(tn+1) + ui(tn) leading to

ui(tn+1) =
(
ωidt u(tn+1) + ui(tn)

) 1

(1 + ωidt)
(1.32) eq*NLUMAXW_VISCSTRAIN

� 2 viscoelastic relaxation of strain rate (stress rate is better), internal state ui

u̇i + ωiu
i = u̇ and F i = (K∞gi)ui = (K∞gi)

su

s+ ωi
(1.33) eq*NLUMAXW_VISCSTRAINRATE

� 3 viscoelastic relaxation of hyperelastic stress, internal state F i

Ḟ i

ωi
+ F i = − gi

g0
F 0(u) (1.34) eq*uMaxSrel

� 4 viscoelastic relaxation of hyperelastic stress rate, internal state F i,

Ḟ i + ωiF
i =

gi

g0
Ḟ 0(u) =

gi

g0
∂F 0

∂u

∣∣∣∣
u

u̇ (1.35) eq*uMaxdSrel

� 9 Lion transition between viscous and hysteretic behavior for 3D deviatoric stress ∥u̇∥ is a
scalar per material point and not by stress component.

Ḟ i + F i
(
ωi(1 + βi ∥u̇∥)

)
=
gi

g0
Ḟ 0 (1.36)

1.3. NON-LINEAR CONSTITUTIVE LAWS 23

� 301 For 3D hyperelastic behavior without large deformation, one assumes a reference linear
elastic behavior σ = Dε. The hyperelastic stress is assumed to be a function of I(ε) =
ε11 + ε22 + ε33 (used as an approximation of Ī1 − 3 see xxx) of the form

σ0 = f(I(ε)) [D] {ε} (1.37)

the viscoelastic forces and then obtained using xxx

σ̇i + σi
(
ωi(1 + βi ∥u̇∥)

)
=
gi

g0
σ̇0 (1.38)

and the non-linear strain contribution (where the linear contribution is removed if keepLin>0)
xxx

snl = (g0 − 1) [D] {ε}+
∑
i

σi (1.39)

� 5 friction element (Iwan model, Jenkins cell) with simple target, parameters are sliding distance
xif = F if/K

i and load fraction gi = Ki/K∞. The load saturation formulation with internal

state corresponding to the hysteretic force F i and evolution equation

Ḟ i =
gi

g0
Ḟ 0, if F isign(u̇) < F if = gifF

0(u) = xxxwasKixif sticking state

Ḟ i = 0, if F isign(u̇) = F if sliding state
(1.40) eq*uMaxFric

is preferred to the classical displacement formulation with internal state ui position of last
turning point,

u̇i = 0, if
∥∥u− ui

∥∥ < xif =
F i
f

Ki sticking state

u̇i = u̇, if
∥∥u− ui

∥∥ = xif =
F i
f

Ki sliding state
(1.41) eq*uMaxFricb

� 6 friction element with Dahl transition using internal state F i, parameters F if = K∞gix
i
f limit

force and speed exponent αi (stored in a i coefficient) associated with evolution equation

Ḟ i =

(
1− F i

(gif/g
0)F 0

sign(u̇)

)αi
gi

g0
Ḟ 0, (1.42) eq*uMaxDahl

� 7 friction element with Dahl stress relaxation using internal state F i, parameters F if = K∞gix
i
T

limit force and speed exponent αi (stored in NLdata.Fu{k}.g, .xf and .aDahl) xxx associated
with evolution equation

Ḟ i = (K∞gi)

(
1− F i

F if
sign(u̇)

)αi

u̇, (1.43) eq*uMaxDahlb

24 CHAPTER 1. THEORY AND REFERENCE

x, F

K0

K1

F 1
f

x1

KN

FNf

xN

x
b
1 x

b
2 x

b
3

x-xturn

K0
K

b
1

K
b
2

K

K

STS
Iwan 50 cells

x

F
STS
Iwan 50 cells
Iwan 3 cells

Figure 1.4: Scheme for Iwan model and respective response in terms of hysteretic relaxation and on
force/displacement domain. f:jenkins

For runtime integration, the data necessary for evolution equations is stored as

� .opt=[FuCode=uMax tc dt0] followed by a series of cell constants starting at opt(10).

� .iopt starts with the standard Find, iu, Nstrain, Nistate, Ngauss(5), then a list of
operations are specified starting from tcell(10) and cval=opt(10). Implemented values are
listed using sdtm.enum(’nlUmaxw’)

– tcell=-1,cval=[] last cell

– tcell=1,cval=[v1 v2 v3] viscoelastic (Maxwell) relaxation of strain, 3 cval values give
the recursion ui := (uiv2 + u0)/v1 and load fraction definition F i = v3u

i = Kiui. v1 = ωi
in rad/s, v2 = gi/g0, if non-zero v3 = 1/xfi.

– 2, cval=[v1 v2 v3] viscoelastic relaxation of strain, values in cval give the recursion
ui := (uiv2 + v0)/v1 and gain F i = v3u

i = Kiui

– 3, cval=[v1 v2 v3] viscoelastic relaxation of stress, values in cval give the recursion
F i := (F iv2 + v3F

0)/v1.

– 4, cval=[v1 v2 v3] viscoelastic relaxation of stress rate, values in cval give the recur-
sion F i := (F iv2 + v3Ḟ

0)/v1. xxxLion saturation needs documenting

1.3. NON-LINEAR CONSTITUTIVE LAWS 25

– Slip1D,Slip2D friction using 1 or 2 sliding directions use 4, cval=[Mu KtLin kappa

dMudV Sat KtSat]]

– 101 F0 dim1 F0 dim2 interpolation table to estimate a scalar snl(unl). Supported values
for dim2 are listed in sdtm.enum(’nlFu’) (linear, piecewise cubic, analytic forms, ...)

– 102 linear scalar stiffness, one constant

– 103 linear scalar viscosity

– tcell=[1000 unlshift snlshift] component change.

– tcell=300, cval=[c1, c2, c3, kappa, kappav] hyperelastic material cell he MooneyRivlin

CiarletGeymonat

– tcell=301, cval=[omegai,gi/g0,ef] relaxation of deviatoric part of S given by Ṡi+

(ωi + ∥d∥
ϵf

)Si = gi

g0
Ṡ0 xxx discuss (2.39) with Rafael xxx

– tcell=[400] xxx non usual interlacing Ng for first strain g, Ng of ut1, ut2,

The constants vi depend on the integration scheme and constitutive laws

� For implicit integration of Maxwell form (1.31), the evolution equation of the internal state is

ui(tn+1)

(
1

ωidt
+ 1

)
=
ui(tn)

ωidt
+ u(tn+1) = ui(tn+1)v1 = ui(tn)v2 + u(tn+1) (1.44) eq*uMaxImp1

� For implicit integration of strain rate (1.33), the evolution equation of the internal state is

ui(tn+1)

(
1

dt
+ ωi

)
=
ui(tn)

δt
+ u̇(tn+1) = ui(tn+1)v1 = ui(tn)v2 + u̇(tn+1) (1.45) eq*uMaxImp2

� For implicit integration of stress and stress rate, simply replace u with F .

1.3.5 User callback in nl inout, MexCb fields*MexIOa

The current high performance developments are focusing on vectorized user implementation of non-
linearities integrated in the chandle nl inout implementation. In the data structure used during
time integration (see section 1.6.3), the .MexCb field is used to provide data. It is a cell array giving
{@fun,RO}.
For optimized operation limiting field name checks, the option structure RO is assumed to have
ordered fields

� .unlg at a single Gauss point,

� .opt copy of NL.opt,

26 CHAPTER 1. THEORY AND REFERENCE

� .jg int32 vector allowing passing of current Gauss point index,

� .vnlg optional copy of velocities at Gauss point or empty.

� .mID is initialized to the chandle/mhandle C pointer when needing a callback to modify non-
linearity data.

Expected return arguments are snl and uint (new value of internal states).

1.3.6 Dedicated user function (deprecated)s*nluser

The easiest conceptual way to define a non-linearity is to use your own function. For example, if
you have defined the function

function NL=resCubic(NL,fc,model,u,v,a,opt,Case,RO)

NL.unl=-.01*NL.unl.^3 ... % Cubic stiffness on relative motion

+ -.02*NL.vnl; % Linear viscous damping on relative velocity

You can specify that this function should be used to compute a law with no internal states using

model=d_fetime(’TestbeamNL’);

model=nl_spring(’SetPro proid100 Fu="@resCubic"’,model);

% verify that Fu was defined in NLdata

NL=stack_get(model,’’,’NL’,’get’);NL.NLdata.Fu

% The same with a subfunction in d_hbm

model=nl_spring(’SetPro proid100 Fu="d_hbm(’’@resCubic’’)"’,model);

NL=stack_get(model,’’,’NL’,’get’);NL.NLdata.Fu

Note that in instances of deployed MATLAB generated with the MATLAB compiler, all custom
functions must be defined a priori. And only anonymous functions may be created.
The NLdata entry is kept as the one defined by the nl inout db call. Entry NLdata.Fu must then
be replaced by the handle to the dedicated function in the non-linear property

1.3.7 .anonymous field for definition (deprecated)s*nlanonymous

To allow parameter edition, the base mechanism to automatically create an .Fu as MATLAB anony-
mous function handle is to use the following NLdata fields

� .anonymous a string which upon model initialization in nl spring(’Init’) will be trans-
formed to an anonymous function of the form

Fu=@(NL,~,~,~,~,~,opt,~)AnonymousString

The @(...) part can be included in the string if it differs from the default.

1.3. NON-LINEAR CONSTITUTIVE LAWS 27

Parameters are fields of the NL non-linear structure (in the example below NL.par1 will be
defined). The initialization of these parameters is performed using the NLdata.Param field
described below.

In frequency domain solvers, the current frequency (rad/s) is accessible in opt.w.

� .csv a string to define parameters in the anonymous function. This string declares parameters
using cingui ParamEdit format. This declares the parameters to be used, with a default
value, their type and a possible brief explanation, as illustrated below.

� .Param The current parameters. .Param can be

– a string defining the parameters declared in the .csv by par1=val1 par2=val2 ...

– a structure with fields corresponding exactly to the declared parameters struct(’par1’,
val1, ’par2’, val2).

Any omitted parameter will be set to its default declared in .csv. Lack of default values would
then results in an error at the function execution.

� .tex a string providing a tex format of the formula used in .anonymous.

Use of inline functions. One can directly use the existing framework with a customized call based
on the concept of anonymous function handles in MATLAB.

d_hbm(’TestDuffing2Dof-an’)

% completes the defintion

NLdata=struct(’csv’,’par1(1#%g#"value of parameter 1")’,...

’Param’,’par1=val’,...

’tex’,’p_1 u_{NL}’
’anonymous’,’-NL.par1*NL.unl’);

model=feutil(’setpro 2001’,model,’NLdata’,NLdata);

1.3.8 Maxwell cell model using matrices (deprecated)s*maxwellex

The Maxwell cell model belongs to a category of so-called rheology based models. the force at each
Gauss point is calculated based on an internal rheology identified as a spring-mass based model.
Figure 1.5 illustrates the Maxwell (or Zener) model.

28 CHAPTER 1. THEORY AND REFERENCE

k0

c1k1

u u1

Figure 1.5: Standard viscoelastic model (single cell Maxwell or Zener). Generalized multi-cell model.
f:maxwellCell

Since each branch is decoupled, one can write a series of scalar internal state evolution equations

ėn =
Kn

Cn
(en − eb) (1.46) eq*maxwellIEvo2

and recompose the total non-linear stress using

snlb = K0eb +
∑
n

Kn(eb − en) (1.47) eq*maxwellIEvo3

To allow more general superelement representation of the constitutive law, the external force snlb can
be defined defined by a first order equation involving the system strain state at a given Gauss point
eb and ėb, and a series of internal states ei and ėi. In the following bold letters refer to non-scalar
values for a given Gauss point.[

Kbb Kbi

Kib Kii

]{
eb
ei

}
+

[
Cbb Cbi

Cib Cii

]{
ėb
ėi

}
=

{
snlb
0

}
(1.48) eq*maxwellSE

No external forces being applied on the internal rheology, one is able to use a Schur complement to
obtain the internal states evolution equation

ėi = −C−1
ii Kibeb −C−1

ii Cibėb −C−1
ii Kiiei (1.49) eq*maxwellIEvo

Once the internal state is resolved, the external force can be deduced

snlb =
[
Kbb Kbi

]{ eb
ei

}
+
[
Cbb Cbi

]{ ėb
ėi

}
(1.50) eq*maxwellFb

Resolution of equation (1.49) can be obtained with different strategies. In transient simulations a
local integration is performed using the Euler scheme. From instant tn the internal state at instant
tn+1 has to be integrated over h = tn+1 − tn

en+1
i = eni + h(1− θ)ėni + hθėn+1

i (1.51) eq*nlconst3

1.4. HYPER-VISCO 3D MODEL 29

Implemented strategies can involve either single or multiple step integration in implicit or explicit
form. Implicit resolution involves Newton-Raphson resolution, the usual initial prediction assuming
constant velocity over the time step.
In the harmonic balance method, the global resolution scheme iterates on the internal states, so that
one directly computes equations (1.49) and (1.50) from the current solution and the be used in the
residue equation. The harmonic balance scheme then checks non-linear forces equilibrium and the
stability of internal velocities.

1.4 Hyper-visco 3D models*hyper3d

The SDT/OpenFEM implementation of volumes also partially supports hyper viscoelastic laws un-
der large deformation. This section derived from [?]. This first section summarizes classical results
of continuum mechanics, which are needed for later discussion of constitutive laws exhibiting hyper-
elasticity, viscoelasticity and rate independent hysteresis under large deformation

salencon83,doghri00,simo00
[2, 3, 4].

1.4.1 Kinematicss*hyper3dkin

Considering a three dimensional euclidean space with base e1, e2, e3, a body Ω may be described
by a region from this space. Each point P of Ω is called a material point and its coordinates are
described by

{x(t)} = x1 {e1}+ x2 {e2}+ x3 {e3} (1.52)

in the reference configuration of a Lagrangian description of the problem. The body position may
evolve with time, and time derivatives give velocity v and acceleration a as

v =
∂x

∂t
, a =

∂2x

∂t2
. (1.53)

The kinematic description is based on the knowledge of the initial and current positions of any mate-
rial point. The difference between initial and current positions of material points is the displacement
vector {u}. Material behavior is typically described as a function of strains. SDT uses the simplest
strain measure, the displacement gradient, given by

F =
∂ {x}
∂ {x0}

= δij +
∂ui
∂xj

= δij + ui,j (1.54)

where δij denotes the Kronecker delta function. This tensor links the reference and the current
configurations, making it a hybrid deformation description. It may be divided in two separate parts:
rotation R and dilatation U in a polar decomposition

F = RU (1.55)

30 CHAPTER 1. THEORY AND REFERENCE

where R is orthonormal, and U positive definite and symmetric. To obtain rotation independent de-
formation tensors, quadratic forms of the deformation tensor are used. For a Lagrangian description,
the right Cauchy-Green tensor

C = F TF (1.56)

will be used (the left Cauchy-Green tensor is B = FF T). The Green Lagrange strain eij =
1
2 (Cij − δij) is a common alternative. The main difference between the two is that C tends to
the identity for nil deformation, while e tends to zero.

1.4.2 Invariants, strain ratess*hyper3dinvariant

For isotropic materials, properties should not depend of orientation and behavior should not depen-
dent on rotation R. Invariants of the strain tensors are often used in constitutive formulation to
achieve rotation independence. The three classical invariants are

{Ii} =


tr(C)

tr2(C)− tr(C2)

2
det(C)

 (1.57)

where one should note that I3 = det(C) = det2(F) quantifies the square of the volume change at

the material point, and J = I
1/2
3 the volume change. The derivatives of invariants with respect to

deformations will also be necessary and are classically given by

∂Ik
∂Cij

=
[
δij I1δij − Cij I3C

−1
ij

]
, (1.58)

and
∂Ik

∂Cij∂Ckl
=
[
0ijkl δijδkl − 1ijkl I3

(
C−1
ij C

−1
kl − 1

2

(
C−1
ik C

−1
jl + C−1

il C
−1
jk

))]
(1.59)

where 1ijkl = 1
2(δikδjl + δilδjk). For highly incompressible materials, it is usual to describe the

potential associated with the deviatoric part of the strain using reduced invariants, defined by

Ī1 = J−2/3I1 = I
−1/3
3 I1, Ī2 = J−4/3I2 = I

−2/3
3 I2. (1.60)

It is useful to remind that for zero deformation F = I, Ii =
{
3 3 1

}
so that it makes sense

to use expressions involving Ī1 − 3 (as in the Yeoh model). To check values on also reminds that
dI1dC = I, dI2dC = 2I, dI3dc = I

DD = 4



1 1 1
1 1 1
1 1 1

 (
∂2ψI

∂I23
+2

∂2ψI

∂I2I3
)+ 4



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 −1/2

 (
∂ψ

∂I2
+
∂ψ

∂I3
) (1.61)

1.4. HYPER-VISCO 3D MODEL 31

xxx
Deformation rate tensors are also often needed. The velocity gradient tensor is commonly used and
given by

L =
∂vi
∂uj

=
∂vi
∂xj

∂xi
∂uj

= ḞF−1 (1.62)

As this gradient is not rotation independent, it is handy to decompose it into strain rate and spin
tensors, by taking its symmetric and the skew-symmetric parts,

D =
1

2

(
L+ LT

)
,W =

1

2

(
L− LT

)
. (1.63)

The strain rate tensor may be used in viscoelastic laws while the spin tensor is usually discussed in
finite deformation plasticity models

simo84
[5].

1.4.3 Stress, equations of motion, time integration at a material points*hyper3dstress

When computing work of deformable bodies the dual quantities (energy conjugate pair) are stress
and strain, as force and displacement are dual for rigid body mechanics.
In the Lagrangian reference frame, the second Piola-Kirchhoff S = JF−1σF−T tensor is used for
stress (degenerates to stresses in the original configuration for small deformation but large rotation).
The hybrid reference tensor (initial frame for strains to current frame for stresses) is called first Piola-
Kirchhoff Π = JσF−T (or Boussinesq, or also nominal stress) and is not symmetric. In linearized
conditions, the Eulerian description given by the Cauchy stress σ is used.
Stress and strain energy present different equivalent expressions, forming dual pairs

W = S : e = Π : F = σ : ε. (1.64)

Material or constitutive models are laws that describe the evolution of stresses for an history of
deformations and possibly internal states. They are system models of what happens at a material
point.
Given a displacement gradient tensor, stress at timestep n + 1 must be an explicit function of
the gradient displacement tensor and its internal states at the last timestep n (considering explicit
implementation),

[Sn+1, u
int
n+1] = f(∇un+1,∇u̇n+1, u

int
n). (1.65) eq*mat_law_evo

The development of material laws described by (1.65) should typically be tested and tuned separately
from the global structural application.

With material laws defined, equations of motion at the structure level are derived from the fact that
the work of all forces for any kinematically acceptable virtual displacement field w is equal to zero.
In other words, ∫

Ω0

S : δe(w)−
∫
Ω0

{fv} δw = 0. (1.66) eq*vf1

32 CHAPTER 1. THEORY AND REFERENCE

Implicit solution of this equation typically require a tangent stiffness obtained from integration of
the tangent material stiffness (1.69).

1.4.4 Hyperelastic potential, polyconvexity
s:3d_he_int

A material is said to be hyperelastic, if its stress only depends on the current strain. It is classically
shown that this is verified if stress is obtained as the derivative of a potential ψ that depends
on deformation tensors. Derivation from a potential is a sufficient condition to demonstrate that
deformations are completely reversible, despite being nonlinear. The non-linearities involved are

� geometric: large deformations is typically involved requiring non-linear strain descriptions

� material: as the operating range can be large, there is no physical reason for materials to
respond linearly

For an isotropic material, behavior must be independent of rotation. This can be used to demonstrate
that the potential may always be expressed as a function of strain invariants. The stress is thus
found as

Sij =
∂ψ

∂eij
= 2

∂ψ

∂Cij
= 2

∂Ik
∂Cij

∂ψ

∂Ik
(1.67) eq*dwde

where the convention of summing repeated indexes is used. Note that the potential is decomposed
in deviatoric (section 1.4.6) and compression (section 1.4.5) behavior so that the vector actually
used is dWdI=

{
∂ψD/∂I1 ∂ψD/∂I2 ∂ψD/∂I3 ∂ψI/∂I3

}
.

Other consequence of the expression of the potential in terms of the invariants is that it may always
be written in the form

doghri00
[3]

σ = β0(I1, I2, I3)1 + β1(I1, I2, I3)F
TF + β2(I1, I2, I3)(F

TF)2 (1.68) eq*he_stress_beta

with βi functions of the invariants that may be determined according to the model. These three
β functions, therefore can be seen as a non parametric manner of modeling hyperelasticity. Since
going through the whole space spanned by I1, I2 and I3 is unpractical, most common approaches are
to use either selected order representations as polynomials on the invariants or order independent
models that are not based on invariants, as will be described in section 1.4.6 .

The only restriction on the energy potential is its polyconvexity
salencon83,schroder03
[2, 6] which ensures stability. For

scalar stress or 0D, the potential is the integral of the force/displacement curve. This function can
be a polynomial or any convex function corresponding to the fact that the instantaneous stiffness
or slope of the force/displacement curve is positive. In 3D, ensuring polyconvexity for a tensor is
not straightforward but corresponds to the positive definite nature of the material stiffness. For an
isotropic material, this material stiffness can be expressed as

inria_2004,R5.03.19
[7, 8]

Dijkl = 4
∂2ψ

∂Cij∂Ckl
= 4

∂2In
∂Cij∂Ckl

∂ψ

∂In
+ 4

∂In
∂Cij

∂2ψ

∂In∂Im

∂Im
∂Ckl

(1.69) eq*d2wde2

1.4. HYPER-VISCO 3D MODEL 33

leading to the expression of the structural geometric stiffness
bal2
[9]

[KG] =

∫
Ω
{δqm} {N,l}

(
FmkDijklFni + Slj

)
{N,j} {dqn} (1.70) eq*KgLD

SDT uses naming conventions dWdI,d2WdI2 for ∂ψ
∂In

, ∂2ψ
∂In∂Im

and expressions of these values for classic
materials are given in section 1.4.5 for compression or isotropic volume change and section 1.4.6
for deviatoric or shear behavior.

1.4.5 Compression or volume change behaviors*hyper3diso

Materials used for bushings are typically incompressible. Compressibility is described by the isotropic
part of strains and a specific discussion of constitutive laws is needed. Remaining behavior is
associated with deviatoric strains and discussed separately.
To achieve this separation for hyperelastic models, one may divide the potential in a deviatoric and an
isotropic part ψ = ψD +ψI , which means that the same decomposition applies to the stresses, aside
from numerical issues. This implies the introduction of two separate models that are superposed in
the end.
As the third invariant is the only one that has no deviatoric components, compression models are

normally based on J = I
1
2
3 . The isotropic potential for linear models normally used is

ψI =
κ

2
(J − 1)2 =

κ

2
(I3 − 2I

1
2
3 + 1)

∂ψI

∂J
= κ(J − 1) = −p

∂ψI

∂I3
= κ(1− I

−1/2
3)

∂2ψI

∂I23
= κ

2 I
−3/2
3

(1.71) eq*pressA

This potential however allows full compression or volume suppression. For this reason, the Ciarlet-
Geymonat

chapelle10
[10] potential was developed with a logarithmic penalty term,

ψI = κ (J − 1− ln(J)) = κ
(
I
1/2
3 − 1− ln(I

1/2
3)

)
∂ψI

∂J
= κ

(
1− 1

J

)
= −p, ∂2ψI

∂J2
= κ

(
1 +

1

J2

)
∂ψI

∂I3
=

κ

2

(
I
−1/2
3 − I−1

3

) ∂2ψI

∂I23
= κ

(
−I−3/2

3 /4 + I−2
3 /2

) (1.72) eq*press

The stress tensor resulting from the isotropic part may be computed as σp = pδij in an Eulerian
reference frame, which may be transferred to a Lagrangian reference frame by Sp = F−1(σp)F

−T .

34 CHAPTER 1. THEORY AND REFERENCE

1.4.6 Deviatoric lawss*hyper3dshear

Three main groups of hyperelastic potentials are typically
marckmann06
[11] distinguished: invariant, principal

strains and physic based potentials.
Invariant based formulations were developed first and are still widely used, because of their simpler
formulation and low numerical cost.
The Yeoh model uses polynomials of (Ī1−3) = (J−2/3I1−3) = (I

−1/3
3 I1−3), (Ī2−3) = (J−2/3I2−

3) = (I
−1/3
3 I2 − 3), and J − 1 = (I

1/2
3) whose values vanish for zero displacement. And is given by

ψD =
∑n

i=1Ci0(I1I
− 1

3
3 − 3)i

∂ψD

∂Ii
=

(∑n
i=1 iCi0(I1I

− 1
3

3 − 3)(i−1)

){
I
− 1

3
3 0 −1

3I1I
− 4

3
3

}
∂2ψD

∂Ii∂Ij
=

(∑n
i=2 i(i− 1)Ci0(I1I

− 1
3

3 − 3)(i−2)

) I
− 2

3
3 0 −1

3I1I
− 5

3
3

0 0 0

−1
3I1I

− 5
3

3 0 1
9I

2
1I

− 8
3

3


+
(∑n

i=1 iCi0(I1I
− 1

3
3 − 3)(i−1)

) 0 0 −1
3I

− 4
3

3

0 0 0

−1
3I

− 4
3

3 0 4
9I1I

− 7
3

3


(1.73)

used in (1.67) for stress computations and (1.69) for Jacobian computations. Note that Abaqus uses
a generalization combining polynomials of the form

∑N
i,j=1Cij(Ī1 − 3)i(Ī2 − 3)j .

The neo-hookean model only considers C10 (asymptotic elasticity gives G = 2C10). The Mooney-
Rivlin model adds the second invariant and constant C01 to this formulation and is given by

ψD = C10Ī1 + C01Ī2 = C10(I1I
−1/3
3) + C01(I2I

−2/3
3)

∂ψD

∂Ii
=

{
C10I

− 1
3

3 C01I
− 2

3
3 −C10I1I

− 4
3

3

3
− 2C01I2I

− 5
3

3

3

}

∂2ψD

∂Ii∂Ij
=


0 0 −C10I

− 4
3

3

3

0 0 −2C01I
− 5

3
3

3

−C10I
− 4

3
3

3
−2C01I

− 5
3

3

3

4C10I1I
− 7

3
3

9
+

10C01I2I
− 8

3
3

9


(1.74) eq*mr

where asymptotic elasticity gives G = 2(C10 + C01).
Stability requires ∂2ψD/∂C2 to be a positive definite matrix, but the above potentials do not verify
stability for some strain. A very simple potential featuring a very good fitting unconditional stability

1.4. HYPER-VISCO 3D MODEL 35

dal19,carroll11
[12, 13] is the Carroll model given by

ψD = αĪ1 + βĪ41 + γĪ
1
2
2 = αI1I

−1/3
3 + βI41I

−4/3
3 + γI

1/2
2 I

−1/3
3

∂ψD

∂Ii
=

{
αI

−1/3
3 + 4βI31I

−4/3
3

γI
−1/2
2 I

−1/3
3

2
−αI1I

−4/3
3

3
− 4βI41I

−7/3
3

3
− γI

1/2
2 I

−4/3
3

3

}

∂2ψD

∂Ii∂Ij
=


12βI21I

−4/3
3 0 −αI

−4/3
3

3
− 16βI31I

−7/3
3

3

0 −γI
−3/2
2 I

−1/3
3

4
−γI

−1/2
2 I

−4/3
3

6

−αI
−4/3
3

3
− 16βI31I

−7/3
3

3

γI
−1/2
2 I

−4/3
3

6

4αI1I
−7/3
3

9
+

28βI41I
−10/3
3

9
+

4γI
1/2
2 I

−7/3
3

9


(1.75)

As the proof for the stability of invariant based models is not straightforward, the use of potentials
associated with principal strains λi (equivalently, the eigenvalues of the matrix C) ensures the
stability, as the matrix C is symmetric (note that these correspond to the square of the singular
values of F). The Ogden model

marckmann06
[11] is the most used model of this type

ψD =
N∑
n=1

µn
αn

(λαn
1 + λαn

2 + λαn
3) (1.76)

This open form ensures that the model is able to fit any curve, but it comes at the cost of a large
number of parameters and the need to compute eigenvalues at each step.
So called physic based potentials are based on assumptions of how the elastomer behaves at a mi-
croscopic level. The main origin of this type of model is the chain model

marckmann06
[11], which assumes that

the elasticity of networked chains is due to the entropic changes, thus it may be determined by the
number of possible states. This chain model gave origin to the widely used Arruda-Boyce model,
which assumes that the chains are distributed in a form that 8 chains are attached to the center and
to the vertices of a cube. More recently the assumption that the chain is restricted to a tube gave
origin to the tube model, and finally the assumption that these chains are continually distributed in
a sphere gave origin to the sphere models which are very good at capturing the behavior with few
parameters.
m hyper implements basic checks of material properties as shown in the examples below. This allows
verification of how κ controls how close ν is to the fully incompressible value 0.5.

m_hyper(’urn’,’PadC{2.5264,0,0,120,3,rho1n,tyMoon,unTM}’);
m_hyper(’urn’,’PadA{2.5264,-0.9177,0.4711,1200,3,f .35,g .5688,rho1n,tyYeoh,unTM}’)

1.4.7 Mixed U-P elements small deformations*hyperup

For nearly incompressible materials one uses mixed elements that interpolate displacement and
pressure using different shape functions (see

zienkiewicz_1989
[14] section 12.5,

R3.06.08
[15] or Abaqus theory manual Section

36 CHAPTER 1. THEORY AND REFERENCE

3.2.3 Hybrid incompressible solid element formulation). These are called mixed U-P elements. In
SDT switch to this formulation is done for rule 20002 (hexa20 for u, hexa8 for p/J with 8 Gauss
point, similarly tetra10/tetra4 with 4 Gauss point, penta15/penta6 xxx, see) For small deformation,
the mixed formulation uses a generalized strain of the form

ϵx
ϵy
ϵz
γyz
γzx
γxy
p


=



N, x 0 0 0
0 N, y 0 0
0 0 N, z 0
0 N, z N, y 0

N, z 0 N, x 0
N, y N, x 0 0
0 0 0 Np




u
v
w
p

 (1.77)

The constitutive law is then split in deviatoric and pressure/isotropic/isochore parts using the

expression of the deviatoric part of the strain {ϵdev} =
[
D0 − 2

3 {m} {m}T
]
{ϵ}, where {m}T =[

1 1 1 0 0 0
]
and D0 = diag

([
2 2 2 1 1 1

])
, leading to

σx
σy
σz
σyz
σzx
σxy
sp


=

[
[D]
[
D0 − 2

3 {m} {m}T
]

{m}
{m}T −1/K

]


ϵx
ϵy
ϵz
γyz
γzx
γxy
p


(1.78)

the virtual work associated with sp is assumed to be equal to zero, so that one has the weak set of

equations 0 =
∫
ΩNp(p/K − {m}T {ϵ}) =

[
KT
qp

]
{q} +Kpp {p} (which is avoids numerical problems

by considering a p interpolation that is coarser than the displacement interpolation). When doing
transients, the equations of motion would be of the form[

M 0
0 0

]{
q̈
0

}
+

[
Kqq Kqp

KT
qp Kpp

]{
q
p

}
=

{
Fext
0

}
(1.79)

where the augmentation by pressure DOF is not a dynamic equation but a set of constraints.
As a reminder, in the isotropic elasticity case, one has K = E/(3(1− 2ν)), G = E/(2(1 + ν)) and

D = K



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+
2G

3



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3/2 0 0
0 0 0 0 3/2 0
0 0 0 0 0 3/2

 (1.80) eq*KGlin

1.4. HYPER-VISCO 3D MODEL 37

For cross checking of large deformation, one considers the zero deformation case. One then has
I1 = I2 = 3, I3 = 1, thus ∂ψI/∂I3 is vanishing and ∂2ψI/∂I23 = κ/4, which applying (1.69) is
consistent with (1.80). For the Yeoh model one has the isochore part

∂2ψD

∂I2i
= C10

 0 0 −1/3
0 0 0

−1/3 0 4/3

 , ∂ψD

∂Ii
= C10

{
1 0 −1

}
(1.81)

and the deviatoric contribution

DD = 4

1 1 1
1 1 1
1 1 1

(∂2ψD

∂I23
+ 2∂

2ψD

∂I2I3
) + 4

0 1 1
1 0 1
1 1 0

−1/2
−1/2

−1/2

(∂ψ∂I2 + ∂ψ
∂I3

)

= 4C10
3

2 2 2
2 2 2
2 2 2

− 3

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 −1/2

 (1.82)

leading to 2C10 = G (as also said in
zhuravlev_2017
[16] table 2.2).

1.4.8 Cross check exampless*hyperupcheck

Incompressible cube with edge length L is considered as a first example. The static problem is

divσ = 0

div u = tr(ε) = 0 (1.83)

σ = −pI+ 2Gε

ux(x = 0, y, z) = uy(x, y = 0, z) = uz(x, y, z = 0) = 0

σxx(x = L, y, z) = Pext

The incompressibility condition yields ϵyy = ϵzz = − ϵxx
2 . Assuming linear displacements, boundary

conditions leads to the system {
−p+ 2Ga = Pext

−p−Ga = 0
(1.84)

Hence, we deduce that

ux =
Pext
3G

x, uy = −Pext
6G

y, uz = −Pext
6G

z p = −Pext
3

(1.85)

Nearly compressible cube is a second example. The static problem is

divσ = 0

p+Kdiv u = 0 (1.86)

ux(x = 0, y, z) = uy(x, y = 0, z) = uz(x, y, z = 0) = 0

σxx(x = L, y, z) = Pext

38 CHAPTER 1. THEORY AND REFERENCE

The constitutive law can be rewritten as

σ = λtr(ε)I+ 2Gε = Ktr(ε)I+ 2Gεdev (1.87)

Assuming linear displacements, the deformation reads

εxx = a and εyy = εzz = −νa (1.88)

so that
tr(ε) = a(1− 2ν) (1.89)

Boundary conditions lead to the following system{
a [λ(1− 2ν) + 2G] = Pext

a [λ(1− 2ν)− 2Gν] = 0
(1.90)

Recalling that

λ =
Eν

(1 + ν)(1− 2ν)
, G =

E

2(1 + ν)
and K =

E

3(1− 2ν)
(1.91)

the system becomes {
Ea = Pext

0 = 0
(1.92)

So, we deduce

ux(x, y, z) =
Pext
E

x, uy(x, y, z) = −ν Pext
E

y, uz(x, y, z) = −ν Pext
E

z (1.93)

p(x, y, z) = −Pext
3

(1.94)

Note that E = 3G for incompressible materials so that this solution tends to the one obtained in
the incompressible case.

1.4.9 Mixed U-P elements large deformations*hyupld

In the large deformation case, one considers a development similar to the two field case described in
R3.06.08
[15]. The generalized strain combines the displacement gradient and the internal state g related to
volume change/pressure. The second Piola-Kirchhoff stress is given by

Sij = 2
∂Ik
∂Cij

∂ψD

∂Ik
+

∂I3
∂Cij

g (1.95) eq*dwdeup

and g related to volume change by considering the weak relation∫
Ω
ĝ(g − ∂ψI

∂J
) = 0 (1.96)

1.5. TRANSIENT SOLUTION OF NON-LINEAR EQUATIONS 39

where the potential is given by (1.71) where
∂ψI

∂I3
= κ(1−I−1/2

3) or (1.72) where
∂ψI

∂I3
=
κ

2

(
I
−1/2
3 − I−1

3

)
.

As a result the generalized stress components are obtained using

{
Sij
sg

}
=

[
2∂Ik/∂Cij 0 2∂I3/∂Cij

0 1 −1

]
∂ψD/∂Ik
∂ψI/∂I3
g

 (1.97)

For time integration, considering a bulk viscosity xxx.

1.4.10 Viscoelastic implementationss*hyper3dvisc

Since
penas21,these_penas
[17, 18] demonstrated that the stress relaxation with saturation was the most appropriate, this

is the currently implemented model on the derivatives of the potential dWdI=
{
∂ψD/∂I1 ∂ψD/∂I2 ∂ψD/∂I3 ∂ψI/∂I3

}
.

The law (1.26) is used on the deviatoric components of ∂ψD/∂Ii.
For the compression part ∂ψI/∂I3, which is much stiffer for many elastomers, a viscous model
∂ψI = ∂ψI0 + (κv/κ)∂ψ̇

I
0 is used leading to the increment equation

∂ψI(tn+1) = ∂ψI0(tn+1)(1 +
kv
κdt

)− ∂ψI0(tn)
kv
κdt

(1.98)

note that the have a viscosity dominate compression behavior at a target frequency fv in Hz you
should use kv = κ/(2πfv).

1.5 Transient solution of non-linear equationss*nltime

1.5.1 Principless*hbmt1

To allow the use SDT transients with external FEM packages, it is assumed that a superelement
representation of the model is imported

[MR] {q̈R(t)}+ [CR] {q̇R(t)}+ [KR] {qR(s)} = [bR] {u(t)} (1.99) eq*e1

In general, the reduction is performed so that the DOFs retained {qR} are related to the original
DOFs of a larger model by a Rayleigh Ritz reduction basis T using

{q}N = [T]N×NR {qR(s)}NR (1.100) eq*qtqrt

This representation is fairly standard. The data structure representation within SDT is described
in section 1.8.1 . SDT/FEMLink supports superelement import from various FEM codes and more
details are given in section 2.4.1 for NASTRAN, section ?? for Abaqus, and section ?? for ANSYS.

40 CHAPTER 1. THEORY AND REFERENCE

For transient resolution a real representation of damping must be used. Rayleigh and viscous damp-
ing are thus the only solutions supported. It is noted that for sine sweeps, it is possible to consider
a time varying Rayleigh damping which has been found to be appropriate in some cases.
nl solve fe timeModalNewmark implements an optimized fixed time step version of the Newmark
scheme (see

vermot_2010
[19] section 4.1.4) assuming a modal basis associated with the underlying linear system

(discussed in section 1.5.3).
The non-linear resolution of the mechanical equation is usually performed by an iterative predic-
tor/corrector scheme. Given the solution at time step n, the prediction is initialized by assuming a
null acceleration at time step n+ 1, so that the predictors q0n+1 and q̇0n+1 are expressed as

q0n+1 = qn + hq̇n + h2(12 − β)q̈n

q̇0n+1 = q̇n + h(1− γ)q̈n

(1.101) eq*TIS_FDS_Newmark_NL_predictors

One considers the displacement correction ∆qn+1 as the only unknown and velocity and acceleration
at time step n+ 1 are given by 

∆qn+1 = qn+1 − q0n+1

q̇n+1 = q̇0n+1 +
γ
hβ∆qn+1

q̈n+1 =
1
βh2

∆qn+1

(1.102) eq*TIS_FDS_Newmark_NL_newquad_direct

Provided solution qkn+1, the residue is defined as

rk+1
n+1 = [M] q̈kn+1 + [C] q̇kn+1 + [K] qkn+1 − fcn+1 − fNLn+1(q

k
n+1, q̇

k
n+1, tn+1) (1.103) eq*TIS_FDS_Newmark_NL_residual

and the correction is found by solving J∆qk+1
n+1 = rk+1

n+1 using the diagonal fixed Jacobian

J =
[
\ 1
βh2

+
γ2ζjωj

βh + ω2
j \

]
(1.104) eq*e2c

For one step formulation see
vermot_2010
[19] formula (4.53).

For a given system, a one-step Newmark is the combination of a linear evolution matrix depending
on the linear system properties and time step h , and external forces. One thus writes the discrete
state evolution equation as {

qn+1

q̇n+1

}
= [E(h)]

{
qn
q̇n

}
+ {fch} (1.105) eq*e2d

The evolution equation combines the quadrature rules and the mechanical equilibrium at states n
and n+ 1: 

qn+1 = qn + hq̇n + h2βq̈n+1 + h2
(
1
2 − β

)
q̈n

q̇n+1 = q̇n + hγq̈n+1 + h (1− γ) q̈n
Mq̈n+1 + Cq̇n+1 +Kqn+1 = fcn+1

Mq̈n + Cq̇n +Kqn = fcn

(1.106) eq*e2e

1.5. TRANSIENT SOLUTION OF NON-LINEAR EQUATIONS 41

Multiplying the quadrature equations by M and replacing acceleration terms by their mechanical
equation resolution provides the evolution equation that can be written in matrix form

[
M + h2βK h2βC

hγK M + hγC

]{
qn+1

q̇n+1

}
=

[
M − h2

(
1
2 − β

)
K hM − h2

(
1
2 − β

)
C

−h (1− γ)K M − h (1− γ)C

]{
qn
q̇n

}
+ · · ·{

h2βfcn+1 + h2
(
1
2 − β

)
fcn

hγfcn+1 + h (1− γ) fcn

}
(1.107) eq*e2f

The evolution matrix is then

[E(h)] =

[
M + h2βK h2βC

hγK M + hγC

]−1 [
M − h2

(
1
2 − β

)
K hM − h2

(
1
2 − β

)
C

−h (1− γ)K M − h (1− γ)C

]
(1.108) eq*e2g

and the interpolated external force is then

{fch} =

[
M + h2βK h2βC

hγK M + hγC

]−1{
h2βfcn+1 + h2

(
1
2 − β

)
fcn

hγfcn+1 + h (1− γ) fcn

}
(1.109) eq*e2h

The acceleration can then be resolved with one of the quadrature rules, the simplest being the
velocity quadrature providing the relation

q̈n+1 =
1

hγ
(q̇n+1 − q̇n)−

1− γ

γ
q̈n (1.110) eq*e2i

1.5.2 Enforced displacement, resultantss*nlDofSet

When considering enforced displacement, the residual at a given time is{
RI
RC

}
=

[
MII MIC

MCI MCC

]{
q̈I(t)
q̈C(t)

}
+

{
FNL(

{
qI
qC

}
,

{
q̇I
q̇C

}
)

}
− [bExt] {u(t)} (1.111) eq*DofSet1

Different strategies are implemented to compute the enforced time derivatives of qI . Simple ap-
proaches uses the base definition of curves for each column of bset.def which corresponds to{

q̈I q̇I qI
}
= {TI}

{
üI(t) u̇I uI

}
(1.112) eq*DofSet2

Observation of the residual loads on the enforced part requires the RI part of the residual to be
computed, this prevents the use of an elimination strategy before residual computations and the
elimination must thus be performed, when solving for qc and its time derivatives. Resultant on a
fixed body associated with the sum of an arbitrary set of non-linearities thus requires an enforced
zero displacement (DofSet and not FixDof entry).
Non-linearities may also lead to resultant like observations (the transmitted load), but this is then
considered to be a generalized form of stress so that the quantity of interest must be exported as a
stress or an internal state during time integration.

42 CHAPTER 1. THEORY AND REFERENCE

1.5.3 Definition of an underlying linear systems*hbmt2

When defining a non-linear constitutive law, it is always possible and often desirable to define an
underlying linear system. Taking the simple case of a cubic spring where snl = e3nl. Figure 1.6
clearly illustrates the difference between the tangent stiffness, slope of force at current point 3e2nl,
and the secant stiffness, ratio of force divided by deformation e2nl.

-1 -0.5 0 0.5 1

Deformation

-1

-0.5

0

0.5

1

F
or

ce

-1 -0.5 0 0.5 1

Deformation

0

0.5

1

1.5

2

2.5

3

S
tif

fn
es

s
5 10 15 20

10-8

|D
O

F
|

BeamNL LinRange 2z log(Kc)=6.0
 log(Kc)=6.2
 log(Kc)=6.4
 log(Kc)=6.7
 log(Kc)=6.9
 log(Kc)=7.1
 log(Kc)=7.3
 log(Kc)=7.6
 log(Kc)=7.8
 log(Kc)=8.0

5 10 15 20

-150
-100

-50

Frequency [Hz]

ph
as

e
(w

)
[d

eg
]

Figure 1.6: Left : Tangent and secant stiffness. Right : possible underlying linear systems for the
BeamNL example.f:tanstiff

When defining a non-linear constitutive law, it useful and SDT-HBM requires that an underlying lin-
ear system be defined. For a general Fnl(e(t), ė(t)) law, the non-linear stress used in time integration
should thus be of the form

{snl(t)} = {Fnl(e(t), ė(t))} − [kJ] {enl(t)} − {F0} (1.113) eq*e3

with [kJ] {enl(t)} the chosen linear representation of the non-linearity and F0 the value of the
non-linear stress at the system state around which the response is computed.
When considering assembly in SDT, elements with a non-linearity defined through the NLdata field
are ignored in linear assembly if NLdata.keepLin=0. For example, for a Maxwell model, reduction
is best performed using the high frequency modulus. Thus a non-linear spring should be coupled
with a linear spring using that high stiffness.

1.6 Data structures for non-linearities in times*nldata

1.6.1 NLdata non-linearity definition (model declaration)s*nlformpro

A non linearity has the following input form when stored as NLdata of an element group property.

1.6. DATA STRUCTURES FOR NON-LINEARITIES IN TIME 43

� .type a MATLAB function handle which is used for initialization phases. The most commonly
used non-linearity is nl inout. For transient simulations observation matrices are built in
nl spring(’init’) while for HBM solutions this is done in hbm solve InitHBM.

� .Fu can be done through generic anonymous functions see section 1.3.7 , user defined anony-
mous functions see section 1.3.6 , tabular definitions section 1.3.2 .

� .Fv can be used for tabular definitions section 1.3.2 of laws on velocity.

� .adof optional definition of DOF specific to the non linearity that will be propagated to
model.FNLDOF. For vectorized non-linearities, this gives the decimal part describing fields as-
sociated with .snl. To associate other DOF to .unl, you can set a .udof field.

� .isens optional : may be used to select a partial list of strains normally computed. For
example to only keep translations of a cbush use .isens=[1 2 3].

� .adofi to declare internal states, in coherence with field .MatTyp below. This field can be
omitted of left empty if no such feature is used. For the cell array format, rows correspond to
each observed strain, and multiple columns can be given when multiple Gauss points differ.
More details are given under DOF representation of internal states.

� .keepLin set to zero to avoid assembly of linear behavior in the base matrices

� .MatTyp : declares the time derivative of the signal associated to each internal DOF. When
using explicit definitions of internal DOF, as in HBM or time integration with explicit internal
states, this is used to specify how to compute the Jacobian (see nl spring NLJacobianUpdate).
Thus MatType=1 stiffness corresponds to a displacement DOF, 2 mass an acceleration DOF, 3
viscous damping a velocity DOF.

� .Jacobian can be a function computing the tangent matrix or a number as described for
nl spring nl inout.

� .obs Optional command to fill in out.FNL.NL, see below. This can either be a logical, evalu-
ating nl fun(’obs’), or a cell-array giving non linear data fields to propagate to the output
from model.NL, or a string which will be evaluated.

� .snl as a empty field will force the initialization of a NL.snl buffer during time integration.

� .StoreType can be used to specify the StoreType strategy.

� .MexCb is a cell array giving callback function and options (for an example see d fetime K t)
. .MexCb{1}=fun should be a function handle within a function that also contains

– funtoOpt the method checking init of the non-linearity, called in nlutil(’genToOpt’)

44 CHAPTER 1. THEORY AND REFERENCE

– funcheckFu post buildBC checks

– funJacobian implements Jacobian computation.

� .unl(:,:,2)=unl0 Optional. Define an offset in observation (before applying Fu) as unl =
c ∗ u+ unl0. It can be a vector giving direct offset (as many lines as c). It can also be a string
defining what offset to apply : the only strategy implemented at this time is unl0=’q0’ to
remove observation of the static from observation at each time step. It can also be the name
of a curve stored in model stack.

1.6.2 Additional fields in models*nlmodeltime

Base on model stack entries of the pro type where as NLdata field is present as described in the
previous section, nl spring support additional model fields.

� .NL This is a stack containing all non linearity data built using nl spring NL. The stack has
as many lines as existing non-linearities and three columns, the first being the non linearity
type (the non linear function name most of the time), the second the non linearity name, and
the non linearity data described in section 1.6.3 .

� .FNL This is a transfer vector containing non linear data to output. Each non-linearity can
store output data based on .Find.

� .FNLDOF This is a DOF vector corresponding to vector FNL. These FNLDOF are defined freely
and not critical for base functionality. They are however convenient to keep track of internal
states or non-linearity output, so that its building should be taken care of.

� .FNLlab This is a cell array of labels corresponding to non linear data to output. This is used
by iiplot when non-linear responses are displayed during cleanup operations.

Output from simulations with non-linearities, from nl solve, or fe timehave additional data stored
in a .FNL field. This is a deformation structure with fields

� .def Stored content of model.FNL at saving times.

� .DOF Stored content of model.FNLDOF.

� .data Copied data of out.data (saved times)

� .lab Stored content of model.FNLlab.

1.6. DATA STRUCTURES FOR NON-LINEARITIES IN TIME 45

� .NL This is a cell array of the same format than model.NL. The third column contains structures
containing non linear data relevant for result display. By default it contains field .iNL, the
index vector of the current non linearity in the full FNLDOF. This field can be modified using
the .obs callback of the non linearities. This field is based on NL.FInd, if .FInd is missing,
iNL will be empty. iNL is then generated using the length of NL.adof, or by default using the
length of NL.unl.

1.6.3 NL structure : non-linearity representation during time integrations*nlformtime

During time integration, non-linearities are stored in the model.NL cell array. Each non-linearity is
a data structure with the following standard fields for optimized computation (see mkl utils

� .type a MATLAB function handle which is then called through
NL.type(NL,fc,model,u,v,q,opt,Case). Some older NL use a string giving the type name.

� .c observation matrix (1.3) for non linear displacements and velocities. During solves this
is stored in row format obtained with NL.c=v handle(’mklst’,sparse(NL.c)) to optimize
product speed.

� .unl pre-allocated memory for the result of NL.c*u. Must be consistent with the number of
rows in NL.c. The computation is handled by mkl utils. New implementations support a
third dimension to store .unl0 in .unl(:,:,2) and .unlj1, the value at the previous time
step, in .unl(:,:,3).

� .vnl if exists pre-allocated memory for the result of NL.c*v. Must be consistent with the
number of rows in NL.c. The computation is handled by mkl utils.

� .snl preallocated buffer of length size(b,2) to store the non-linear stresses (1.6).

� .b command matrix for non linear loads. At the end of the NL.type call it is expected that
NL.snl (which may point to NL.unl if buffer overwrite is acceptable) contains the non linear
component loads such that the residual becomes r=r+NL.b*NL.snl.

During solves, sparse matrix operations must be optimized. This the product bsnl is com-
puted, it is interesting to store the transpose of the b matrix. The matrix is expected to be in
transposed form NL.b=v handle(’mklst’,b);. This conventions allow reuse of a .c matrix
for command.

Note that the sign conventions when using unl to return a non linear force are opposite to
what is done when the result is added to fc, see sdtweb nl fun to compare conventions.

� .FInd C++ start index in model.FNL to store the current non linearity data.

46 CHAPTER 1. THEORY AND REFERENCE

� .adof FNLDOF specific to the non linearity.

� .obs Optional command to fill in out.FNL.NL, see below. This can either be a logical, evalu-
ating nl fun(’obs’), or a cell-array giving non linear data fields to propagate to the output
from model.NL, or a string which will be evaluated.

� .opt data vector containing double values to be used in C++ implementation of non-linearities.
Default values would be FuCode(1) tc(2) dt0(3) val1 ...

– val1, ... is a FuCode dependent storage

– for tables the standard, see sdtweb(’d fetime’,’stdFuToOpt’)) is to use iopt[6:3:.]
to point to start of table in .opt stored, give M as [(double)jcur,Val/Type,s, table]

� .iopt int32 data vector containing non-linearity specific integers. (1)FInd C start of model.FNL,
(2)iu C staring position of internal states in global displacement vector, (3)Nstrain number
of observed strains for each Gauss point. (4)Nistate number of internal states per Gauss
point. (5)Ngauss number of Gauss points in a vectorized non-linearity. Later format may be
dependent on non-linearity, a few variants are documented below to improve standardization

– FuTable no internal state iopt(6)=xStartC,(7)yStartC, (8)size(y,1), (9)size(y,2)

C style start in .opt of table with unl as first column and F (uNL) values in second fol-
lowed by cur (3 values). When combined with FvTable iopt(10)=xStartC,(11)yStartC,
(12)size(FvY,1), (13)size(FvY,2).

– constitutive laws with internal states will use iopt(6)StoreType update strategy in resid-
ual call, iopt(7:9) formulation dependent choices. iopt(10)=tstartC (11)size(y,1),

(12)size(y,2) may be used for tabular definitions (hyperelasticity for example) where
table starts by 3 values cur,val,s followed by the x vector and y matrix.

� .MexCb is a cell array giving callback function and options, when calling MATLAB from the
mex, . For optimized operation without fieldname checks, the option structure is assumed to
have ordered fields :

– .unlg at a single Gauss point,

– .opt copy of NL.opt,

– .jg int32 vector allowing passing of current Gauss point index,

– .vnlg optional copy of velocities at gauss point or empty.

– The .mID identifier can be used for C callbacks. See section 1.3.5 .

� in the C implementations the N field gives [0]numel(unl(:,:,1)) [1]size(c,1) size(c,2)

isTrans(c) [4]size(b,1) size(b,2) [6]isTrans(b) [8]length(opt) length(iopt) [10]size(unl,3)

1.7. HARMONIC BALANCE SOLUTIONS AND SOLVER 47

� obsolete

� .extDOF obsolete see iopt, double vector containing Matlab indices [iu,Nstrain,Nistate]

� Obsolete .unl0 offset to apply to .unl, so that the content of .unl becomes NL.c*u+unl0.
Current implementations should store in .unl(:,:,2).

� Obsolete .vnl0 offset to apply to .vnl, so that the content of .vnl becomes NL.c*v+vnl0.
Current implementations should store in .vnl(:,:,2).

1.7 Harmonic balance solutions and solvers*hbmsolv

1.7.1 Time/frequency representation of solutions/loadss*hdof

The solver is meant to support a generic representation of time dependence. The generalized degrees
of freedom considered here are components of a vector noted Z and correspond to amplitudes
multiplying functions of both space and time. For a scalar function of space (single spatial DOF),
multiple harmonic DOF fk and time varying shape functions hk(t) fully describe the time dependence

{f(t)} =
∑
k∈H

fkhk(t) = {fk}Tnk
[Hkt]nk×nt

(1.114) eq*e5

In the specific case of harmonic balance
jaumouille11
[20], the time dependence of a given DOF is written as

q(t) = zcq0 +
∑
n∈H

(zsqn sin (nωt) + zcqn cos (nωt)) =
∑
k∈H

Zqkhk(t) (1.115) eq*zkq

where spatial DOFs are indexed by q and temporal DOFs are indexed by k but need also a repre-
sentation of the harmonic n. Thus the ordering of generalized space/time DOFs is

{Zqk} =


zcq0
zsq1
zcq1
...


nq .nh×1

(1.116) eq*e6

with a spatial dependence q (degree of freedom in the time domain equation(1.1)) and a temporal
dependence k. Note that in the notation above, the individual components are assumed real, but
the problem can also be written in complex form (1.128). As always in SDT, it is expected that
the ordering of Z could be changed. Thus a list of DOFs is needed to specify the meaning of each
component of the vector. This list is given in the form

48 CHAPTER 1. THEORY AND REFERENCE

hdof={ % List of active DOFs

1.01 ’c0’ % Node1.DOF1(x), constant(B0)

10.02 ’s1’ % Node10.DOF2(y), first harmonic (A1)

10.02 ’c1’ % Node10.DOF2(y), first harmonic (B1)

};
where the first column specifies the spatial DOF and the label in the second column the tempo-
ral component. hbm solve harm commands provide utilities to manipulate spatio-temporal DOF
definitions.
The definition of a solution is thus made using a data structure with fields

� .def matrix with columns being Zqk values in given configuration (frequency dependence will
be obtained with multiple columns).

� .hdof cell array giving the meaning of spatio-temporal amplitudes in .def rows (see equation
(1.115))

� TR since, in general harmonic balance is performed using a reduced model, restitution of the
full DOFs is based on (??) with the reduction basis stored in def.TR.

Building of the time response of a given DOF q(t) should, using the convention of summed indices,
actually be written as

q(tj) = ZqlHlj (1.117) eq*zhdef

with Hlj = Hl(tj) the l
th harmonic function at time tj . Times are assumed to be sampled into the

regular time interval [t1 : tN], so that H can be written in this case as a matrix

Hlj =



11(t1) . . . 11(tN)
sin(ωt1) . . . sin(ωtN)
cos(ωt1) . . . cos(ωtN)

... . . .
...

sin(kωt1) . . . sin(kωtN)
cos(kωt1) . . . cos(kωtN)

... . . .
...


(1.118) eq*Hkt

In further equations and in the code, the notation Hkt(Hkt) is used even though in the real form
(with opt.Opt.complex=0) there are two l lines for each harmonic k (except for harmonic 0). Note
also that when using harmonic fractions (for example in engines it is usual to use N/2 harmonics to
represent a period over two revolutions), you should declare opt.Opt.nu=2 and the .harm field will
contain k = 1/2, 1,
An advantage of the retained definition is that it is not necessary to define all harmonics. Furthermore
problems with sub-harmonics of the excitation frequency can also be considered and only require
development of appropriate label handling methods to define sub-harmonic functions hk(t).

1.7. HARMONIC BALANCE SOLUTIONS AND SOLVER 49

The inverse transform is the way to obtain the harmonic amplitudes from a time vector and is
associated with the Htk linear operator

Zql = {q(tj)}Nq×Nt [Htk]Nt×Nt = {q(tj)}
2

N


1
2 sin(ωt1) cos(ωt1) . . .
...

...
... . . .

1
2 sin(ωtN) cos(ωtN) . . .

 (1.119) eq*e7

It is thus verified that HktHtk = [I]Nk×Nk.
Some of the literature considers linear DOFs (including modal DOFs and some physical DOFs),
non-linear DOFs (internal or physical). SDT-HBM does not ask the user for the nature of DOFs
since non-linear DOFs can actually be deduced from the consideration of DOFs present in non-linear
observation matrices and the notion was not found to be needed.
The spatial DOF nature (physical, modal, internal) is also not necessary. It is however useful to
have automated procedures to assign an identifier for every spatial DOF. It is thus expected that
generalized (modal) DOFs be assigned a node number at the time of superelement creation. To
avoid viewing mistakes DOF associated with modes or internal states are affected to DOF 99 (of
the form NodeId.99).
Finally, some non-linearities use internal states. As the HBM solver needs explicit access to these
states, the hbm solve InitHBM command performs a pre-processing step that affects a node number
for each internal state so that they are present in q.

1.7.2 Harmonic balance equation (real DOF)s*hbmbaset

The base iterations are associated with a non-linear least squares minimization problem of the form

min
Z

∥{R(Z, ω, u)}∥ = min
Z

∥[A(ω)] {Z} − [b] {uext} − [bnl] {snl(Z, ω)}∥ (1.120) eq*hbmmin

The contents of matrices [A(ω)], [b], and [bnl] depend on the choice of time functions in (1.117).
With the states described in (1.115) using (1.118), the rows of the residue matrix correspond to the
work equilibrium equation (1.1) integrated over a period. Thus the harmonic 0 (constant term) is
given by

R0 =

N∑
i=1

(Mq̈ + Cq̇ +Kq − Fnl(q, q̇, qnl, ω, ti)− Fext(ω, ti)) (1.121) eq*e8

The harmonic k leads to a sine (respectively cosine) contribution corresponding to an integral over
the N time points of a period

Rsk =

N∑
i=1

sin(kωti)(Mq̈(ti) + Cq̇(ti) +Kq(ti)− Fnl(q, q̇, qnl, ω, ti)− Fext(ω, ti)) (1.122) eq*Rsk

50 CHAPTER 1. THEORY AND REFERENCE

Assuming states ordered with sine contributions first followed by cosine, the generalized Jacobian
matrix ∂R

∂Z is composed of a linear part

AH =



K

K − (ω)2M −ωD
ωD K − (ω)2M

. . .

K − (kω)2M −kωD
kωD K − (kω)2M

. . .


(1.123) eq*hbmA

and a series of non-linear contributions

JH = [bH]
∂ {sH(Z, ω)}

∂Z
= [bH]

∂ {sH(ϵH, ω)}
∂ϵH

∂ {ϵ}
∂Z

= [bH]
∂ {sH}
∂ϵH

[cH] (1.124) eq*e9

The linear part of AH in (1.123) is skew-symmetric. The negative sign is applied to the lines
corresponding to the sine contributions. Using the notation (1.115), the negative sign is then located
on the upper triangular part.
In the implementations derived from

nlvibkit14
[21], the non-linear contributions are computed by finite

differences (or possibly analytically although this is not yet implemented). And the inner loop
iterations of the non-linear solver seeking the solution of (1.120) are of the form ∆Z = [J]−1R.
In direct frequency solvers by SDTools, one seeks to obtain the ideal single step convergence, where
a sequant inter-harmonic stiffness [KϵH] is found such that

{sH} = [KϵH] {ϵH} (1.125) eq*e10

The two have the notable major difference that in general [KϵH] ̸= ∂σ
∂ϵ . In other words secant and

tangent stiffness are different matrices.
In the case of a scalar strain ϵ and a linear complex stiffness of the form k(1+iη). The inter-harmonic
coupling is block diagonal and of the form

KϵH =



k
k −kη
kη k

. . .

k −kη
kη k

. . .


(1.126) eq*hbmAb

since −iσs + σc = k(1 + iη)(iϵs + ϵc) = ik(ϵs + ηϵc) + k(ϵc − ηϵs).

1.7. HARMONIC BALANCE SOLUTIONS AND SOLVER 51

Another form considers an extended Z with frequency stored as an additional component (this is
achieved using opt.Opt.fvar=1)

min
Ze

∥[Ae(ω)] {Ze} − be∥ (1.127) eq*e11

In this case a last column ∂R/∂ω is added to the Jacobian. For the last row, the ideal would be to
compute ∂ω

∂Z but the evaluation of this quantity is quite difficult, so that arc length techniques are
used for continuation.

1.7.3 Complex formulation and equivalent stiffnesss*hbmkeq

To clarify the notion of equivalent stiffness found at the harmonic balance solution, the real harmonic
balance states (1.115) can be written in complex form expressing the time response as

q(t) = ℜ
(∑
k∈H

zqke
ikωt

)
(1.128) eq*zkqc

where spatial DOFs are indexed by q and temporal DOFs are indexed by k. Thus the ordering of
generalized space/time complex DOFs

{Zqk} =


zq0
zq1
zq2
...


nq .nh×1

(1.129) eq*e12

The harmonic function is then complex,

Hlj = eilωtj (1.130) eq*hcpx

The usual harmonic balance using Fourier coefficients, one has the equivalence

zqk = zcqk − izsqk (1.131) eq*ZtoC

as eikωt = cos(kωt) + isin(kωt), the equivalence between (1.128) and (1.115) is indeed

ℜ(zqk)cos(kωt)−ℑ(zqk)sin(kωt) = zcqkcos(kωt) + zsqksin(kωt) (1.132) eq*e15

For each harmonic k the mean equilibrium over a period (1.122) leads to an equation of the form(
−(kω)2M + ikωC +K

)
{zqk}+ (Fnl(q, q̇, qnl, ω, ti)− Fext(ω, ti)) [Htk] = 0 (1.133) eq*Rskc

where
Fnl(Z, ω) = − [b] snl (1.134) eq*e16

52 CHAPTER 1. THEORY AND REFERENCE

Since b is a constant matrix, the harmonic contribution of a non-linear stress can be computed at
the gauss point level using complex notation

sk = sck − issk = F−1
k (snl(Z, ω, ti)) =

N∑
i=1

(cos(kωti) + i sin(kωti)) (snl(Z, ω, ti)) (1.135) eq*e17

For a linear spring with a loss factor and harmonic strains uk

sk = F−1
k (K(1 + iη)u(Z, ω, t)) = K(1 + iη)uk (1.136) eq*e18

Assuming a scalar stress relation, the non-linear harmonic problem (1.133) is thus equivalent to a
linear harmonic problem(

−ω2M + iωC +K + [b]Keq,k [c]
)
{Zk} − Fext(ω) = 0 (1.137) eq*Reqk

with the equivalent complex stiffness given for each Gauss point by

Keq =
F−1
k (snl(Z, ω, ti))

uk
(1.138) eq*e19

This expression of the problem is the basis for fixed point solvers, where a starting Keq,k is intro-
duced.

1.7.4 Inter-harmonic coupling discussions*hbmjac

Harmonic balance Jacobian estimation based on local non-linear physics is rarely discussed in the
literature. Possible for a given harmonic to estimate an equivalent local linear constitutive law. This
notion comes close to quasi-Newton methods in transient simulations, that estimate Jacobians with
fixed operators based on the non-linear constitutive laws.
The harmonic balance framework adds some complexity as the transient response is decomposed
in the time domain. It seems however possible to assess Jacobian relevant topologies using Taylor
series expansion when the non-linear forces can be expressed in a functional way (coherent with the
existence of a constitutive law).

[Jnl] =
∂fnlj
∂zhqk

(1.139) eq*e20

fnlj ≃ k1ϵ+ k2ϵ
2 + k3ϵ

3 + · · · (1.140) eq*e21

ϵ ≃ ϵcq0 + ϵcq1 cos(ωt) + ϵsq1 sin(ωt) + ϵcq2 cos(2ωt) + ϵsq2 sin(2ωt) + ϵcq3 cos(3ωt) + ϵsq3 sin(3ωt) + · · ·
(1.141) eq*e22

1.7. HARMONIC BALANCE SOLUTIONS AND SOLVER 53

First order terms induced by the linear and cubic constraint term respectively induced by ϵ =
ϵ+ δcq1 cos(ωt) and ϵ = ϵ+ δsq1 sin(ωt){ (

k1 − 9ϵ3cq1k3
)
δcq1 cos(ωt) +

3
4ϵ

2
cq1k3δcq1 cos(3ωt)(

k1 + 9ϵ3sq1k3
)
δsq1 sin(ωt)− 3

4ϵ
2
sq1k3δsq1 sin(3ωt)

(1.142) eq*e23

First order terms induced by the linear and cubic constraint term respectively induced by ϵ =
ϵ+ δcq3 cos(3ωt) and ϵ = ϵ+ δsq3 sin(3ωt){ (

k1 − 9
4ϵ

2
cq3k3

)
δcq3 cos(3ωt) +

3
4ϵ

2
cq3k3δcq3 cos(9ωt)(

k1 +
9
4ϵ

2
sq3k3

)
δsq3 sin(3ωt)− 3

4ϵ
2
sq3k3δsq3 sin(9ωt)

(1.143) eq*e24

First order terms induced by the linear and quadratic constraint term respectively induced by ϵ =
ϵ+ δcq1 cos(ωt) and ϵ = ϵ+ δsq1 sin(ωt){

ϵcq1k2δcq1 + k1δcq1 cos(ωt) + ϵcq1k2δcq1 cos(2ωt)
ϵsq1k2δsq1 + k1δsq1 sin(ωt)− ϵsq1k2δsq1 cos(2ωt)

(1.144) eq*e25

First order terms induced by the linear and quadratic constraint term respectively induced by ϵ =
ϵ+ δcq3 cos(2ωt) and ϵ = ϵ+ δsq2 sin(2ωt){

ϵcq2k2δcq2 + k1δcq2 cos(2ωt) + ϵcq2k2δcq2 cos(4ωt)
ϵsq2k2δsq2 + k1δsq2 sin(2ωt)− ϵsq2k2δsq2 cos(4ωt)

(1.145) eq*e26

1.7.5 Harmonic load definitions*hbmload

The SDT definition of loads DofLoad or enforced displacement DofSet use the formalism of input
shape matrices. Thus the time dependence of the load is given by

{F (t)} = [b] {u(t)} (1.146) eq*e27

where [b]N×NS describes the spatial content and the harmonic content is fully contained in {u(t)}.
u is often scalar but can be a vector if multiple loads are combined. For each u component j, a two
dimensional curve is defined giving

{uj(t)} = uc0j(ω) +
∑
k∈H

uskj(ω)sin(kωt) + uckj(ω)cos(kωt) (1.147) eq*e28

The harmonic load frequency dependence is then defined for each load vector bj by scalar coefficients
associated to each harmonic

{uj(ω)} =


uc0j(ω)
us1j(ω)
uc1j(ω)

...

 (1.148) eq*e29

These terms are declared by the field .curve defined in the Load structure.

54 CHAPTER 1. THEORY AND REFERENCE

� The field can be omitted or left empty. It then assumed that the force is a constant value
associated to the c1 harmonic.

� The field can be a single curve, producing a scalar amplitude value per harmonic. The same
amplitude is then applied to all loads.

� The field can be a cell array of curves, each curve being associated to a column of Load.def.
The result of each curve is then coherent with the harmonics declared in the curve.

A given curve entry will provide the frequency dependency of a given Load vector for a specified set
of harmonic shapes.
It can be defined using a Tabular form, or a Functional form by a structure coherent with sdtweb

curve formats, with fields

� .X A 1x2 cell-array.

– .X{1}The first cell array provides the base frequency vector that will provide the linear
interpolation coefficients. This can be left empty for functional definitions.

– .X{2} The second cell is a column cell-array providing the harmonic shape labels to whom
the load is applied.

� .Y the field providing the amplitude

– Tabular form: a matrix with as many lines a in field .X{1} and as many columns a the
number of harmonics provided in field .X{2}.

– Functional form using MATLAB anonymous function handles. A structure with fields

* .anonymous Provides the inline function. The anonymous function header is set by
default if omitted, @(Zf,w). The inline can access the curve structure Zf whose fields
will contain the fields declared in curve.Param, and the current frequency w.

* .csv A parameter declaration string under cingui ParamEdit format. This declares
the parameters to be used, with a default value, their type and a possible brief
explaination.

* .Param The current parameters. .Param can be

· a string defining the parameters declared in the .csv by par1=val1 par2=val2

...

· a structure with fields corresponding exactly to the declared parameters struct(’par1’,
val1, ’par2’, val2).

Any omitted parameter will be set to its default declared in the csv. Lack of default
values would then results in an error at the function execution.

* .tex a string providing a tex format of the formula used in .anonymous. Lazy
declaration can be done by providing a string using w instead of the structure format.

1.8. DATA STRUCTURES FOR HBM SOLVERS 55

% tabular formulation

C1=struct(’X’,{{1, ... % Frequencies can be a column vector if varying

{’c0’;’c1’}}}, ... % harmonic labels, see hdof

’Xlab’,{{’Frequency’,’harm’}}, ... % Frequency Hz or rad/s

’Y’,[.1 50]); %

% Functional formulation

C2=struct(’X’,{{[],{’s1’}}},...
’Y’,{{struct(’anonymous’,’Zf.k1*w^2’,...
’Param’,’k1=1e-2’,....

’csv’,’k1(1#%g#"")’,...

’tex’,’k_1 \omega^2’)}});
% Lazy anonymous

C3=struct(’X’,{{[],{’c0’;’c2’}}},’Y’,{{’10*sqrt(w)’,’w^2’}});

Internally this definition is transformed to use a command matrix [b]Nhdof×Nhload, with Nhdof the
number of harmonic DOF defined in field hdof and Nhload the number of harmonic loading. One
physical load is replicated by the number of harmonics specified in the curve field .X input to allow
distinct amplitudes per harmonic.
At a given pulsation, a vector u(ω)Nhload×1 is generated by parsing the curve inputs,

{u(ω)} =


...

{uj(ω)}
...

 (1.149) eq*e30

so that the total external harmonic load vector is expressed as

{Zf}Nhdof×1 = [b] {u(ω)} (1.150) eq*e31

1.8 Data structures for HBM solverss*datastruct

1.8.1 Model, superelements*model

The model structure containing in particular

� model.K list of matrices involved in the computation

� model.Klab list of labels describing each matrix

� model.Opt(2,:) list of labels describing each matrix

56 CHAPTER 1. THEORY AND REFERENCE

� model.NL stack of non-linearities.

This section describes a subset of superelement specifications described in more details in sdtweb(’secms’).
The structure is a standard OpenFEM model structure with additional fields described below.

Opt

Options characterizing the type of superelement as follows:
Opt(1,1) 1 classical superelements.
Opt(2,:) matrix types for the superelement matrices. Each non zero value on the

second row of Opt specifies a matrix stored in the field K{i} (where i is
the column number). The value of Opt(2,i) indicates the matrix type of
K{i}. 1 stiffness, 2 mass, 3 viscous damping, 4 hysteretic damping.

Node

Nominal node matrix. Contains the nodes used by the unique superelement. The only restriction in
comparison to a standard model Node matrix is that it must be sorted by NodeId so that the last
node has the largest NodeId.

K{i},Klab{i},DOF
Superelement matrices. The presence and type of these matrices is declared in the Opt field (see
above) and should be associated with a label giving the meaning of each matrix.
All matrices must be consistent with the .DOF field which is given in internal node numbering.

Elt, Node, il, pl

Initial model retrieval for unique superelements. Elt field contains the initial model description
matrix which allows the construction of a detailed visualization as well as post-processing operations.
.Node contains the nodes used by this model. The .pl and .il fields store material and element
properties for the initial model.
Once the matrices built, SE.Elt may be replaced by a display mesh if appropriate.

TR

TR field contains the definition of a possible projection on a reduction basis. This information is
stored in a structure array with fields

� .DOF is the model active DOF vector.

� .def is the projection matrix. There is as many columns as DOFs in the reduced basis (stored
in the DOF field of the superelement structure array), and as many row as active DOFs (stored
in TR.DOF).

1.8. DATA STRUCTURES FOR HBM SOLVERS 57

� .hdof, when appropriate, gives a list of DOF labels associated with columns of TR.def

� .data, when appropriate, gives a list frequencies associated with columns of TR.def

� .KeptDOF can be used to specify master DOFs not included TR.def but that should still be
used for display of the superelement.

1.8.2 Non-linearity definition NLdatas*NLdata

Initialization of non-linear behavior in a cbush element group is performed with the following NLdata
formats
Definition with custom functions. The NLdata property must contains the following fields

� type=’nl inout’ to let hbm solve InitHBM build the needed observation matrix

� Fu=’@UserFun’ references a user function computing the non-linear force. Note that in in-
stances of deployed MATLAB generated with the MATLAB compiler, all custom functions
must be defined a priori. And only anonymous functions may be created.

� adofi to declare internal states, in coherence with field .MatTyp below. This field can be
omitted of left empty if no such feature is used. Internal states are defined independently for
each observation line used in the non-linearity. e.g. For a cbush six directions are available
relative to the 3 translations and 3 rotations that can be observed. .adofi is then a line
cell array of length the number of observations. Each cell defines a number of internal states
associated to the corresponding observation index by providing a column vector with as many
lines as internal states used each containing the DOF extension .99. The cell is left empty if
no internal state is declared for a particular direction. NLdata.adofi={[];[];[];[];[];.99}
will add an internal state to the 6th observation of the non-linearity.

� .MatTyp : declares the time derivative of the signal associated to each internal DOF. This
corresponds to matrix definitions in the Jacobian. Thus MatType=1 stiffness corresponds to a
displacement DOF, 2 mass an acceleration DOF, 3 viscous damping a velocity DOF.

� .isens may be used to select a partial list of strains normally computed. For example to only
keep translations of a cbush use .isens=[1 2 3].

1.8.3 NL structure non-linearity representation during HBM solves*NL

NL structures describing each non-linearity

� NL.c standard observation matrix for the observed motion used to express load. Initially in
physical coordinates and transformed to harmonic observation in Build c unl k.

58 CHAPTER 1. THEORY AND REFERENCE

� NL.b command matrix to reapply harmonic loads on the proper DOFs.

� NL.Fu cell array of in-line functions.

� NL.type string containing the non-linearity type

� NL.c0,NL.b0 observation/command of non-linear strain in physical space only.

1.8.4 Solver options definitions*HbmOpt

out=struct(’Method’,’hbm_solve’,...

’Opt’,[0 9 1 .01 .4 0 1],... [adapt Nhmax nu fmin fmax UNU fvar]

’SaveFreq’,[0 .01 1e3],... [stra (full/block) fstep nFpoints]

’RelTol’,1e-9,’MaxIter’,12,...

’Rayleigh’,[0 0],...

’NeedUNL’,[0 0],...

’AssembleCall’,hbm_solve(’AssembleCall’),...

’JacobianUpdate’,pmat(zeros(1)),...

’iterHBM’,’@iterHBM’,...

’initHBM’,’@initHBM’,...

’resHBM’,’@resHBM’,...

’abscHBM’,’@abscHBM’,...

’FinalCleanupFcn’,’hbm_solve(’’fe_timeCleanup-cf-1’’);’,...

...’dSOpt’,[2 1 0 .01 .01 .1 7 .3 1.5 6 12]); % [Ldeg absc step dsfix dsmin dsmax iopt bmin bmax method maxite]

’dSOpt’,[1 .01 .01 .1 7 .3 1.5 2]); %step(lin/lagrange) dsfix dsmin dsmax iopt bmin bmax Ldeg

� opt.Method (’hbm solve’) Provides the method used by the solver. The default is hbm solve

for a frequency scan.

� opt.AssembleCall (= hbm solve(’AssembleCall’’) Provides the call to perform an assem-
bly performing initialization specific to the HBM module. This field is usually left by default,
using the output of command hbm solveAssembleCall.

� opt.Jacobian (= ’’) Provides a callback to compute the Jacobian used for the solver resolu-
tions. The default procedures peforms Jacobian computations during residue computation so
that this field is empty by default.

� opt.JacobianUpdate (= pmat(ones(1))) A pmat indicator controlling the Jacobian updating
procedure. This can be set to 0 to ask not to update the current Jacobian, or to 1 to trigger
an update. This value can be modified by the solver if automated Jacobian update schemes
are used (see opt.juit).

1.8. DATA STRUCTURES FOR HBM SOLVERS 59

� opt.initHBM (=’@initHBM’) Provides a function handle called for data initialization before
solve. The internal method initHBM is used by default, this field is thus initialized with the
internal handle name of the hbm solve methods.

� opt.abscHBM (=’@abscHBM’) Provides a callback to perform curvilinear frequency predictions
based on a buffer of response. The internal method abscHBM is used by default (provides linear
or Lagrange polynomial interpolation), this field is thus initialized with the internal handle
name of the hbm solve methods.

� opt.iterHBM (=’@iterHBM’) Provides a callback to perform equilibrium iteration loops at a
given point. The internal method iterHBM is used by default, this field is thus initialized with
the internal handle name of the hbm solve methods.

� opt.resHBM (=’@resHBM’) Provides a callback to compute the equilibrium residue of a given
HBM state. The internal method resHBM is used by default (also provides Jacobian computa-
tion), this field is thus initialized with the internal handle name of the hbm solve methods.

� opt.Opt (= [adapt Nhmax nu fmin fmax UNU fvar])

– adapt (= 0) Unused, must be left to 0.

– Nhmax (= 9) Defines the maximum number of harmonics considered, drives the transient
buffer size.

– nu (= 1) Defines the harmonic factor ω = k/ν.

– fstart (= .01) Defines the starting frequency for scanning.

– fend (= .4) Defines the end frequency for scanning.

– UNU (= 0) Unused value left to zero for OpenFEM retro-compatibility.

– fvar (= 1) Declares the frequency representation, either fixed (fvar = 0) or unknown
(fvar = 1). If set to 1 the harmonics vector Z is augmented with the pulsation, corre-
sponding to harmonic DOF 1.99,’freq’.

� opt.Rayleigh (= [alpha beta]) Provides Rayleigh damping values applied to system matri-
ces, defining C = αM + βK.

� opt.juit (= -Inf) Defines an automated Jacobian update strategy used in resHBM, the Ja-
cobian is then updated only after juit iterations. The default value set to -Inf asks for an
update at each step.

� opt.dSOpt (= [stra dsfix dsmin dsmax iopt bmin bmax Ldeg]) Defines the curvilinear
frequency prediction for continuation techniques, used by abscHBM.

– stra (= 1) defines the increment strategy, either fixed (0) or with Lagrange polynomials
(1).

60 CHAPTER 1. THEORY AND REFERENCE

– fix (= .01) defines the fixed pulsation step , used for fixed strategy and to initialize
other ones.

– min (= .01) defines the minimum authorized pulsation step.

– max (= .1) defines the maximum authorized pulsation step.

– iopt (= 7) defines an optimal iteration number indicator. Pulsation frequency continua-
tions will be modulated to target iopt iteration for convergence.

– bmin (= .3) defines the minimal modulation factor applied to reach iopt iterations for
convergence.

– bmax (= 1.5) defines the maximal modulation factor applied to reach iopt iterations for
convergence.

– Ldeg (= 2) defines the degree of the Lagrange polynomial extrapolation.

� opt.RelTol (= 1e-9) defines the tolerance to consider the HBM equilibrium is attained.

� opt.MaxIter (= 12) defines the maximum number of iterations allowed before stopping the
loop.

� opt.SaveFreq (= [stra fstep nFpoints]) defines the output storage strategy.

– stra (= 0) defines the storage strategy. 0 defines a direct output saving, saving as much
as nFpoints results every time the module frequency change is greater than fstep since
the last save.

– fstep (= .01) defines the frequency module evolution step triggering a save.

– nFpoints (= 1e3) defines the total number of results saved in the output.

� opt.NeedUNL (= [0 0]) asks to save unl (if opt.NeedUNL(1)==1) and/or vnl (if NL.NeedUNL(2)==1)
observations.

� opt.FinalCleanupFcn Provides the call to perform output cleanup after resolution. This field
is usually left by default, calling hbm solve(’fe timeCleanup’’. Token -cf-1 directly stores
the result in the GUI.

1.8.5 Option structure during HBM solves*HbmOptSolve

Inside the solver loop, developers may want to access a number of parameters described below. The
internal structure during time solves is described in sdtweb(’nldata#nlformtime’);

� opt.N number of samples for time signal

� opt.A A matrix (1.123) (this matrix gets overwritten during iterations).

1.8. DATA STRUCTURES FOR HBM SOLVERS 61

� opt.Hkt unit evolution of a given harmonic.(1.118)

� opt.dHkt time derivative of unit evolution of a given harmonic.

� opt.hdof two column matrix giving for each DOF the physical DOF and the time variation
index.

� opt.harm internal field of retained harmonics.

1.8.6 Harmonic result structures*ZcurveIntro

Zcurve is the data structure used to store SDT-HBM results. It is a variation of the curve format.
With the first dimension containing harmonic DOFs, the second frequencies and the last amplitudes.

sdtweb hbm_solve(’outputinithbm’)

out=struct(’Y’,zeros(r1),...

’X’,{[{hdof}, freq,amp]},...
’Xlab’,{’Hdof’,’Freq’,’Amp’},...
’hdof’,{opt.hdof},’DOF’,Case.DOF,...
’harm’,opt.harm,’idof’,opt.idof,’ihdof’,opt.ihdof,’cur’,zeros(1,max(3,length(r1)+1)));

62 CHAPTER 1. THEORY AND REFERENCE

2

Tutorials*hbm_tuto

Contents

2.1 Installation . 64

2.2 Frequency domain test cases . 65

2.2.1 Example lists . 65

2.2.2 Spring mass examples . 65

2.2.3 Beam problem with local non-linearity . 66

2.2.4 Lap joint problem with contact . 67

2.2.5 Hyperelastic bushing . 68

2.3 Time domain test cases . 68

2.3.1 Single mass test of various non-linearities 68

2.3.2 Single mass stepped sine . 69

2.3.3 CBush with orientation . 69

2.3.4 Beam with non-linear rotation spring . 70

2.3.5 Lap joint with non-linear springs . 70

2.3.6 Parametric experiments in time . 70

2.4 Elastic representation as superelements 71

2.4.1 NASTRAN cards used for sensors/non-linearities 71

2.4.2 ABAQUS cards used for sensors/non-linearities 72

2.4.3 ANSYS cards used for sensors/non-linearities 72

2.4.4 Storing advanced SDT options in bulk format 73

2.5 Squeal related examples . 74

2.5.1 Post-processing test signals . 74

2.5.2 CEA . 74

2.5.3 NL time transient on reduced bases . 74

2.6 Advanced usage . 74

2.6.1 DOE & general organization in steps . 74

2.7 External links . 75

64 CHAPTER 2. TUTORIAL

2.1 Installations*hbm_install

Steps of an installation are

� Install SDT.

– The current starting point is SDT 6.8 beta which can be dowloaded from http://www.

sdtools.com/distrib/beta/sdtcur_dis.p. To obtain a SDT license key, you should
then use the procedure at http://www.sdtools.com/faq/Release.html.

– To save multiple SDT installations, see http://www.sdtools.com/faq/Release.html#

multi

– You must have write permission in the SDT directory so that it can be patched by yourself.
If this is not the case you should install SDT somewhere in your own directories. For exam-
ple use target=’c:/sdtdata/hbm/sdt.cur’ to avoid install to the traditionnal directory
matlabroot/toolbox/sdt, see http://www.sdtools.com/faq/Release.html#multi.

– For multi-boot systems (windows, linux), use a single SDT (see item above). This will
avoid the need to install patches on both installations.

� For the target SDT a patch is always needed. Patches to SDT are files named hbm patch disp.p.
They can be obtained using a call of the form

hbm_utils(’DistribGetPatch’) % Install the patch

hbm_utils(’DistribCheck’) % Run basic check of versions

– The command only downloads the patch, you are then supposed to click on the link
cd(’d:/del/scratch’);hbm patch dis;rehash toolboxreset % do so that the patch
is installed. The two step procedure is needed to give you a chance that the location of
the patch install is correct.

– You must have write permission in the SDT directory, see first item of install.

� a copy of the SDT-HBM code. Two cases are possible

– a deployement version obtained from SDTools as a crypted 7z file, this requires the exis-
tence of a license.txt file in your base SDT directory.

– a SVN version obtained by a checkout on URL http://support.sdtools.com/svn/hbm/

trunk. For details on SVN clients to do a checkout, contact SDTools. It is expected that
your rename your local copy of the trunk directory HBM. This will then be the base of
your SDT-HBM directory structure.

The SDT-HBM directory structure is

http://www.sdtools.com/distrib/beta/sdtcur_dis.p
http://www.sdtools.com/distrib/beta/sdtcur_dis.p
http://www.sdtools.com/faq/Release.html
http://www.sdtools.com/faq/Release.html#multi
http://www.sdtools.com/faq/Release.html#multi
http://www.sdtools.com/faq/Release.html#multi
http://support.sdtools.com/svn/hbm/trunk
http://support.sdtools.com/svn/hbm/trunk

2.2. FREQUENCY DOMAIN TEST CASES 65

� hbm/m contains all the Matlab files needed to run SDT-HBM.

� hbm/help contains the documentation, see hbm utils Help to update.

� sdt.cur classical location for SDT installation associated with SDT HBM.

� hbm/test contains the files needed for testing. This is used for t hbm log.

� hbm/tex the root file is hbm.tex. It contains all the includes for other documentation files.
Figures are stored as .pdf or .png in directory plots subdirectory, see hbm utils Latex to
recompile. Documention contributions are welcome.

2.2 Frequency domain test casess*hbmf

2.2.1 Example listss*hbmf_1

� d hbm(’TestDuffing2dof’) spring mass duffing example detailed in section 2.3.1

� model=d hbm(’TestDofSet1’) provides a test case with enforced displacement.

� d hbm(’TestBeamNL’) is a simple beam with a rotation spring. This was analyzed in detail
in

hammami_2014a
[22].

� d hbm(’TestBeamVNL’) is similar but implements the rotation spring as a single volume el-
ement. This is used to validate the implementation of volume non-linearities described sec-
tion 1.2.3 .

� d hbm(’TestSPlate’) illustrates a plate on non-linear supports.

� t hbm TestLapJoint Bj2 (provided by AGI as part of project CLIMA)

2.2.2 Spring mass exampless*hbmf_2

The 2DOF duffing model provided by AGI is implemented in d hbm(’TestDuffing2dof’).

66 CHAPTER 2. TUTORIAL

Figure 2.1: f:duff2Two DOF duffing oscillator with cubic non-linearity

sdtweb d_hbm(’TestDuffing2Dof’); % Open source code of example

[mo1,opt,Z,XF]=d_hbm(’TestDuffing2dof’); % Run and display

2.2.3 Beam problem with local non-linearitys*hbmf_3

sdtweb t_hbm beamnl

As a first example clima16(’BeamNLKrange’), one seeks to demonstrate the sensitivity to a variable
stiffness. The non-linear stress strain relation is defined by

Fu=@(NL,fc,model,u,v,a,opt,Case,RO)kcur.*(NL.unl-loss*NL.vnl/opt.w);

which combines a constant stiffness kcur and a loss factor defined in the time domain using a fre-
quency dependent velocity contribution. Taking q = cos(ωt), one assumes the equality of the com-
plex stiffness and viscous damping forms in the stress/strain relationship s = Re

(
k(1 + iη)eiωt

)
=

Re
(
(k + iωceiωt)

)
which leads to c = −η/ω. In the resulting frequency responses below, one clearly

sees a frequency response having a transition from a lower frequency at 4 Hz for kcur = 10e6 (in
model units) and an upper frequency at 15 Hz for kcur = 1e8. The figure also clearly shows that
damping decreases close to the limits as expected (see

hammami_2014a
[22] for details).

2.2. FREQUENCY DOMAIN TEST CASES 67

5 10 15 20

10-8

|D
O

F
|

BeamNL LinRange 2z log(Kc)=6.0
 log(Kc)=6.2
 log(Kc)=6.4
 log(Kc)=6.7
 log(Kc)=6.9
 log(Kc)=7.1
 log(Kc)=7.3
 log(Kc)=7.6
 log(Kc)=7.8
 log(Kc)=8.0

5 10 15 20

-150
-100

-50

Frequency [Hz]

ph
as

e
(w

)
[d

eg
]

As a second example clima16(’BeamNLARange’), one seeks to illustrate the amplitude dependence
obtained for a stiffening spring.

4 6 8 10 12 14

10-7

|D
O

F
|

NL 3z log(Amp)=0.00
 log(Amp)=0.50
 log(Amp)=1.00
 log(Amp)=1.50
 log(Amp)=2.00

4 6 8 10 12 14

-150
-100

-50

Frequency [Hz]

ph
as

e
(w

)
[d

eg
]

100 200 300 400 500 600 700 800

107

Freq

M
ix

ed
 d

at
a

MeanStiff Pre 1
 Post 1

 Pre 3.1623
 Post 3.1623

 Pre 10
 Post 10

 Pre 31.6228
 Post 31.6228

 Pre 100
 Post 100

2.2.4 Lap joint problem with contacts*hbmf_4

Current simple test is found in t contact(’LapJzt’). Variants include one or 3 bolts. Different
strategies to generate the response.
The current test clima16(’LJEB’).

68 CHAPTER 2. TUTORIAL

Figure 2.2: f:lj2Lap joint with contact surface

2.2.5 Hyperelastic bushings*hbmf_5

This example is a functional demonstration of capabilities associated with hyper-viscoelastic behav-
ior. It is based on the RotDamper example.

[mo1,hopt]=d_hbm(’TestBeamVNL’);

2.3 Time domain test casess*hbmt

� sdtweb(’ eval’,’d fetime.m#BumpStop’) simple mass on spring with bumpstop non-linearity.

2.3.1 Single mass test of various non-linearitiess*hbmt_1

Single mass test of various non-linearities t nlspring ModalNewmark. Supported examples are

� Maxwell viscoelastic spring,

� tabular stiffness,

� Dahl model with constant normal force.

% Sample example with tabular stiffness and output spectrogram

li={’MeshCfg{"d_fetime(1DOF):MaxwellA{q0}"}’;’;’
’SimuCfg{ModalNewmark{.1m,.3,fc,chandle1}}’};

RT=sdtm.range(struct,li);mdl=RT.nmap(’CurModel’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,@(f)zeros(size(f)));

2.3. TIME DOMAIN TEST CASES 69

x=[-100 -1e-4 1e-4 100]’;Fu=struct(’X’,{{x}},’Y’,x.*[10 0 0 10]’);

NLdata=struct(’type’,’nl_inout’,’lab’,’TabK’,’keepLin’,0,...

’isens’,3,’MatTyp’,{{[3]}},’Fu’,{{Fu}});
mdl=feutil(’setpro 1000’,mdl,’NLdata’,NLdata);

mo2=nl_solve(’ReducFree 2 10 0 -float2 -SE’,mdl);% With internal DOF

opt=d_fetime(’TimeOpt dt=1e-4 tend=100 ModalNewmark’);

RB=struct(’spec’,’BufTime 20 Overlap .75 fmin0 fmax60 -window hanning’,’ci’,3);

opt=stack_set(opt,’ExitFcn’,’Tip’, ...

struct(’FinalCleanup’,{{’nl_solve’,’PostCdof’}},’DOF’,2.03,’DoFreq’,RB));
opt=stack_set(opt,’info’,’RangeTime’,fe_range(’grid’,struct(’A’,logspace(-3,0,5))));

d2=fe_time(opt,mo2);d2=fe_def(’subdef’,d2,d2.data>d2.data(2));

2.3.2 Single mass stepped sines*hbmt_1s

The d hbm TestSteppedSine example illustrates the stepped sine procedure implemented with the
ModalNewmark solver.
See also d tdoexxx.
In such computations, it is assumed that the excitation frequency is fixed during the transient, so
that the following parameters can be used the the run options

� .Nper number of periods for each computation

� .NperPer number of points per period. Alternatively time step .dt=1/freq/NperPer can be
defined and used to set the initial value of .NperPer).

� .freq vector of frequencies for a series of stepped sine simulations.

� .A vector of amplitudes applied globally on the load case.

After the time computation of the target number of periods the ExitFcn entries in RT.Stack are
processed by order. Typical entries would be

� PostFirstStab performs .ite time simulations without trying to check for stabilization to
allow the transient to stabilize before any

� PostConstit extract non-linear stress/strains and possibly performs harmonic extraction with
doFreq callback.

2.3.3 CBush with orientations*hbmt_cbush

The example is detailed in

d_fetime(’tutoCbushOrient’)

70 CHAPTER 2. TUTORIAL

2.3.4 Beam with non-linear rotation springs*hbmt_2

First do a sweep

sdtweb(’_eval’,’d_fetime.m#TestBeamNLRed’)

2.3.5 Lap joint with non-linear springss*hbmt_3

This test case is discussed with Marco Rosatello. See t bjoint(’TestTime’).
The axial behavior of the C2 connector is given by a non-linear law in tabular Fz(e3) form. This force
is output as the generalized stress during time computations, while for equations actually solved one
uses

s3(t) = Fz(e3(t))− kJze3(t)− F0 (2.1) eq*hbmt3a

For two directions x and y, the tangential behavior is incremented using a Dahl integration scheme

Fx(t+ dt) = Fx(t) + σ(e3(t))dt ėx

(
1− Fx(t)

µFz(e3(t))
sign (ėx)

)α
(2.2) eq*hbmt3b

Since this integration does not guarantee |Fx(t)| <= |µFz(t)|, the condition is enforced at each time
step. Again there is the need to distinguish Fx(t) and the tangential load which needs to account for
adherence stiffness in the nominal model used to generate the modal basis serving to define DOFs
for time integration. Thus

s1(t) = Fx(t)− kJxe1(t) (2.3) eq*hbmt3c

Iwan model with Dahl cells. Data is sigma slope at no load, α shape parameter, µFz normal load.

Fx(t+ dt) = Fx(t) + σdt ėx

(
1− Fx(t)

µFz
sign (ėx)

)α
(2.4) eq*hbmt3d

2.3.6 Parametric experiments in times*doTimeRange

nl solve handles experiments associated with a series of time computations defined using the
fe range format. Typical applications are frequency and amplitude stepping experiments asso-
ciated with HBM testing. For examples see
The principle of the experiment is that at each design point parameters are first changed before
starting a time computation followed by postprocessing steps. The expression for changing the
parameter can be given manually as in the first d fetime doTimeRange example where

R1.param.Zener_c1.SetFcn=’NL.opt(10:11)=[1 -1]*10/500*val(j1);’;

changes the constants in NL.opt(10:11).
Other predefined set functions are

2.4. ELASTIC REPRESENTATION AS SUPERELEMENTS 71

� fin coef do a stepped scaling coefficient on the time step. The Jacobian is updated but the
loading profile is kept constant. This is typical of harmonic testing.

� A,A0 can be used to

� m coef adjust density for quasi-static testing.

xxx

2.4 Elastic representation as superelementss*nlse

The base documentation on superelement import is part of SDT, see SeImport .

2.4.1 NASTRAN cards used for sensors/non-linearitiess*hbm_nas

The NASTRAN equivalent of superelement notions discussed in section ?? are

� qI interface DOF of are defined in NASTRAN using Bset cards. These are stored in SDT aseq*nlse_cb
a DofSet entry to the model.

� bres the independent vectors used to generate residual loads and lead to additional shapes using
the residual vector procedures of NASTRAN

– point loads simply declared using the USET,U6 card

– relative loads simply can obtained by declaring a CDAMP element that generates a relative
viscous load between its two nodes.

– [b] is defined by an DAREA real loading and possibly DPHASE definition. It should be noted
that in SDT, it is strongly advised to define the phase using the input, since a complex
input shape matrix has no sense in the time domain. The input is defined using a RLOAD2

B(f)eiϕ(f)+θ−2πfτ or RLOAD1 (C(f) + iD(f))eiθ−2πfτ

� TC columns are associated to scalar DOFs called QSET. These require the definition of a QSET

card (to declare existing DOFs), SPOINT grids (to have node numbers to support these QSET
DOFs). Note also that the SPOINT numbers should be distinct from other NodeId. The number
of modes defined in the EIRGL card should be lower than the the number of SPOINT and the
QSET card.

� y = [c] {q} observation. Does not exist in NASTRAN documentation, but implemented ex-
porting SPOINT for each observation component and an MPC for each row of the observation
matrix. This is achieved by modifying the model using fe sens(’MeshSensAsMPC’ prior to
export.

� rigid is known as RBE2 in NASTRAN.

72 CHAPTER 2. TUTORIAL

� rbe3 is known as RBE3 in NASTRAN.

Laws without internal states are similar to PGAP and import will be implemented in the future.

2.4.2 ABAQUS cards used for sensors/non-linearitiess*hbm_abqs

The Abaqus equivalent of superelement notions discussed in section ?? are

� qI interface DOF xxx

� bres the independent vectors used to generate residual loads are written as independent load
cases using xxx SeWriteBres

*LOAD CASE, NAME=LC000001

*CLOAD, OP=MOD

1001, 1, 1

*END LOAD CASE

� *FREQUENCY, RESIDUAL MODES : computation of attachment modes, coherent wit first order
corrections.

� *EQUATION : equivalent the SDT MPC definition with a direct constraint matrix declaration.

� *KINEMATIC COUPLING : equivalent of SDT rigid connections where the spring is connected
to a master node with 6 DOF which enforce motion of a number of slave DOFs.

� *DISTRIBUTING COUPLING equivalent of SDT RBE3 : flexible connection where the spring is
is connected to a slave node with 3 or DOF which depend from a set of master nodes.

� *COUPLING : specific surface based definition, followed by either a *KINEMATIC card for rigid
or *DISTRIBUTING card for RBE3 formulations.

� *MPC : node based definition with type BEAM to constraint 6 DOF per node or type PIN to
constraint the 3 translations only.

� *CONNECTOR : connectors provide advanced structural kinematics, type BEAM without elasticity
definition provides a rigid connection (linearized in SDT).

2.4.3 ANSYS cards used for sensors/non-linearitiess*hbm_anss

For spring representations of volumes or surfaces, a first common approach is to use so called rigid
elements. ANSYS supports

� CE, CERIG, MPC184, RBE 2 : rigid connections where the spring is connected to a master
node with 6 DOF which enforce motion of a number of slave DOFs.

� TARGE 170+CONTA 173, TARGE 170+CONTA 174

2.4. ELASTIC REPRESENTATION AS SUPERELEMENTS 73

2.4.4 Storing advanced SDT options in bulk format

For upcom parameters, export is done using design variables.
SDT-NLSIM provides an harmonic definition mechanism (see hdof). Storage in NASTRAN bulk
format is as follows

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

$ All DOFs with sin(omega t) and cos(omega t)

DTI HDOF 1 ALL 123456 CS1 ENDREC

$ Gradual building of full list of DOFs

DTI HDOF 1 N1 THRU N2 123 S1 N3

THRU N4 1 C1 N5 123456 S1 ENDREC

Node numbers are first specified using ALL all (independent) nodes, N1 THRU N2 a list of consecutive
node numbers, N5 a single node number. Associated DOFs are then written using the CM field
of RBE2 (Component numbers of the dependent degrees-of-freedom integers 1 through 6 with no
embedded blanks). A third field then specifies the harmonics. cs1 is a short cut for both cos(1ωt)
and sin(1ωt).
The specification of target frequencies follows the normal NASTRAN format using FREQ or FREQ1
cards. Provision for a single call generating responses at multiple amplitudes (hbm solve AFMap

.Freq and .Amp fields) is specified as a DTI HBMAmp entry with all target amplitudes given.

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

EIGRL,10,,,1

$FREQ,SID,F2,F2,F3

$FREQ1,SID,F1,DF,NDF

FREQ 10 0.318 1. 3.0 4.0

RLOAD1 10 1 1

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

DTI HBMAmp 1 1.0 2.0 3.0 ENDREC

To specify loads, a number of formats are defined.

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

DTI Name 1 SID 101 FORM Amp UN1 UN2

Harmi ACi ASi ENDREC

� Name is an arbitrary string (at most 8 characters) but should be unique and differ from internal
NASTRAN tables. By default it is proposed to use strings of the form P101 where 101 is the
property number.

74 CHAPTER 2. TUTORIAL

� IREC (field 3 of the DTI) is only used when considering multiple entries with the same name
and should be set to 1.

� SID : first the string SID in field 4 then, in field 5, the property identifier (integer) which
should correspond to the set identification number SID for which this amplitude dependence
is defined.

� Form (selected with the string on field 7) is the form name with the following formats defined

Form

Amp amplitudes {u(t)} = C0 +
∑

k∈H Sksin(kωt) + Ckcos(kωt)

AmpT Amp table {u(t)} = C0(ω) +
∑

k∈H Sk(ω)sin(kωt) + Ck(ω)cos(kωt)

� Harmi number of retained harmonic. 1 for cos(1ωt) and sin(1ωt).

� ACi, ASi amplitudes associated with the cosine and sine harmonic contributions. In the AmpT

form integer numbers referring to table entries in the bulk.

2.5 Squeal related exampless*d_squeal

2.5.1 Post-processing test signalss*sqsig

xxx : place viewSpec in iicom sig xxx

2.5.2 CEAs*sqcea

Simple brake example

2.5.3 NL time transient on reduced basess*sqtime

xxx

2.6 Advanced usages*hbm_range

2.6.1 DOE & general organization in stepss*hbm_rangeb

The SDT fe range architecture supports the generic definition of numerical experiments.

� 10 Import linear model (SDT/OpenFEM format)

� 20 Define non-linear properties NLdata for a group of elements (non-linear springs CBUSH,
contact surfaces, zero thickness element, StressCut)

2.7. EXTERNAL LINKS 75

� 30 Define computational range and options

� 40 Solve and save results

� 50 Post-process automatically

model = % SDT/OpenFEM format

Node: [2x7 double]

Elt: [6x9 double]

Stack: {2x3 cell}
model.Stack = % List of properties

% Case : Store boundary conditions and load

’case’ ’Case 1’ [1x1 struct]

% Pro : properties of a group of non-linear elements

’pro’ ’nl_pro2001’ [1x1 struct]

NL=stack_get(model,’’,’nl_pro2001’,’get’)

type: ’p_spring’

il: [2001 2.2503e-02] % Usual elastic properties

NLdata: [1x1 struct]

NL.NLdata= % Input format for non linearity data (CLIMA-HBM)

type: ’nl_inout’

Fu: ’@(x)-.01*x.^3’

Sens: ’cubicSpring’

keepLin: 0

2.7 External linkss*hbm_other

References to external documents. In SDT use sdtweb(’ref’) to open the page.

� ParamEdit standard SDT parameter extraction base/cingui

� fe case load and boundary conditions base/fe case

� fe caseg assembly and GUI complement base/fe caseg

� ConnectionScrew, Assemble assembly and GUI complement base/fe caseg

� fe ceig complex mode computations base/fe ceig

� fe eig mode computations base/fe eig

https://www.sdtools.com/helpcur/base/cingui.html
https://www.sdtools.com/helpcur/base/fe_case.html
https://www.sdtools.com/helpcur/base/fe_caseg.html
https://www.sdtools.com/helpcur/base/fe_caseg.html
https://www.sdtools.com/helpcur/base/fe_ceig.html
https://www.sdtools.com/helpcur/base/fe_eig.html

76 CHAPTER 2. TUTORIAL

� fe gmsh interface to GMSH base/fe gmsh

� fe load load building base/fe load

� MatType time integration base/fe mknl#MatType.

� fe range handling of experiments base/fe range

� staticNewton non-linear static computation base/fe time, part of fe time .

� newmark linear Newmark solver, NLNewmark nonlinear Newmark solverbase/fe time.

� m elastic material property function , m elastic

� beam1 beam element function beam

� celas spring element function celas

� def field at DOF structure def

� feplot display mesh base/feplot

� zcoef weighted matrix list zcoef

� superelements SeImport are documented at base/SeImport

– s*hbm anscb ANSYS superelements base/SeImport#hbm anscb

– s*hbm abqcb Abaqus superelements base/SeImport#hbm abqcb

– upcom superelement keeping element matrices base/upcom

� integrules integration base/integrules

� iiplot display curves base/iiplot

� lsutil level set utilities base/lsutil

� AddSet FEM utilities base/feutil

� feutilb fem utilities utilities base/feutilb

� p super superelement properties base/p super

� p spring spring properties base/p spring

� MBBryan large rotation base/vhandle matrix#MBBryan.

https://www.sdtools.com/helpcur/base/fe_gmsh.html
https://www.sdtools.com/helpcur/base/fe_load.html
https://www.sdtools.com/helpcur/base/fe_mknl.html#MatType
https://www.sdtools.com/helpcur/base/fe_range.html
https://www.sdtools.com/helpcur/base/fe_time.html
https://www.sdtools.com/helpcur/base/fe_time.html
https://www.sdtools.com/helpcur/m_elastic.html
https://www.sdtools.com/helpcur/beam.html
https://www.sdtools.com/helpcur/celas.html
https://www.sdtools.com/helpcur/def.html
https://www.sdtools.com/helpcur/base/feplot.html
https://www.sdtools.com/helpcur/zcoef.html
https://www.sdtools.com/helpcur/base/SeImport.html
https://www.sdtools.com/helpcur/base/SeImport.html#hbm_anscb
https://www.sdtools.com/helpcur/base/SeImport.html#hbm_abqcb
https://www.sdtools.com/helpcur/base/upcom.html
https://www.sdtools.com/helpcur/base/integrules.html
https://www.sdtools.com/helpcur/base/iiplot.html
https://www.sdtools.com/helpcur/base/lsutil.html
https://www.sdtools.com/helpcur/base/feutil.html
https://www.sdtools.com/helpcur/base/feutilb.html
https://www.sdtools.com/helpcur/base/p_super.html
https://www.sdtools.com/helpcur/base/p_spring.html
https://www.sdtools.com/helpcur/base/vhandle_matrix.html#MBBryan

3

Contact modeling, theory and
implementation

s*cont_theory

Contents

3.1 Modeling contact friction interactions . 78

3.1.1 Ideal Signorini-Coulomb model . 78

3.1.2 Functional representation of contact pressure 80

3.1.3 Regularized friction models . 82

3.2 Numerical implementation . 84

3.2.1 Contact friction between 3D surfaces . 84

3.2.2 Eulerian sliding formulation . 86

3.2.3 Frequency domain linearization . 89

3.2.4 Surface Contact with large displacement . 92

3.2.5 Line contact for large displacement . 92

3.3 Implemented contact and friction laws (SDT contact) 92

78 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

3.1 Modeling contact friction interactionss*cont_model

This section presents the two most classical ways of modeling contact friction interactions between
structures. First physical models are described, then numerical implementation for finite element
models is presented. Finally tangent contact friction derivation strategies are presented for modal
computations.

3.1.1 Ideal Signorini-Coulomb models*s:CFI_CM_ContFri

The simplest contact representation – at least in formalism – is commonly known as the Signorini-
Coulomb law to relate contact and friction. The definition of contact between to solids requires the
notion of gap giving the distance between the solids considered, and taken as positive if non contact
occurs. The notion of contact normal naturally follows as giving the way of measuring the gap. As
presented in figure 3.1, the gap is measured as the shortest distance between two solids thus along
the normal between both solids. It is function of the deformation u of each solid.

Figure 3.1: Contact normal (N) and gap (g) definition for two solids, and the Signorini contact-f:CFI_CM_ContFri_setup
pressure law.

In case of contact, a reaction force exists between both systems to avoid interpenetration. As contact
between three dimensional solids is a surface, the notion of contact pressure is preferred here, and
will be denoted p. It is of course directed by the contact normal. The Signorini conditions thus
states for each point in contact 

g ≥ 0
p ≥ 0

(g).(p) = 0
(3.1) eq*signorini

which sets exclusion between the gap values and contact pressure values. Two states are then

3.1. MODELING CONTACT FRICTION INTERACTIONS 79

possible, opened contact with a strictly positive gap and closed contact with a null gap and a
strictly positive contact pressure. The law is plotted in figure 3.1. It is worth noting that Signorini
contact is a mathematical idealization that is incompatible with the physics of surface irregularity
at smaller scales.

The ideal Coulomb friction, as originally presented considers a so-called static friction model. The
formulation distinguishes sticking and sliding states, depending on the existence of movement be-
tween the bodies in contact. If the solids in closed contact do not slide, a reaction force – the friction
force – exists between both. This force is in the tangent plane defined as orthogonal to the contact
normal N , and is determined by the equilibrium of the whole system. In the case of sliding, the
friction force is opposed to the sliding velocity w, and only proportional to the normal load (or
contact pressure) through the introduction of a friction coefficient µ.

Coulomb friction can be expressed as
∥ {fT } ∥ ≤ µ∥ {fN} ∥
∥ {fT } ∥ < µ∥ {fN} ∥ ⇔ {w} = {0}
∥ {fT } ∥ = µ∥ {fN} ∥ ⇔ {fT } = µ∥ {fN} ∥ {w}

∥{w}∥

(3.2) eq*ft_def

where fN is the contact force, fT the friction force, µ the friction coefficient, and w the sliding
velocity. The law is plotted in figure 3.2 which represents the friction force as function of the sliding
velocity. For non-sliding states, the friction force is not defined by the law, as only an inequality is
set.

Figure 3.2: f:coulombIdeal Coulomb friction law and representation of the Coulomb cone

80 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

The inequality concept is classically represented by the Coulomb cone shown in figure 3.2. For a
given contact force at point M, the reaction force is said inside the coulomb cone Cµ, and more
precisely in the cone section Dµ, determined by the tangent plane direction and the contact force
amplitude.

The Signorini-Coulomb laws given by equations (3.1) and (3.2) raise numerical and analytical issues,
since contact and friction forces are not defined for each point of their parameter. Indeed, for zero
sliding velocity and zero gap, the forces are unknown and must be determined by other means.
To solve such problem a Lagrangian formulation has to be used, where the contact-friction forces
are considered unknown and kept in the system to solve. The system size thus increases as function
of the number of contact points, and features inequalities.

3.1.2 Functional representation of contact pressures*s:CFI_CM_func

In addition to the numerical difficulties due to the Signorini-Coulomb formalism, the idealization
represented may not always be satisfying. The reality of surfaces is indeed roughness describing the
irregularities coming from the asperities of both surfaces

gre02
[23]. This is conceptualized in figure 3.3.

Figure 3.3: f:asperitiesIllustration of roughness against nominal surfaces

Due to the very small scales of these asperities – around the micrometer – they are obviously not
modeled in details. The roughness measures in particular commonly realize statistics on the whole
surface, yielding a few parameters describing the surface state. Of course simulation of mechanical
components consider nominal surfaces, with no asperities, as represented in figure 3.3.
In the world of asperities averaged by a nominal surface, interpenetration is possible at the macro-
scopic level, as function of the pressure applied on both surfaces. Indeed, the compression of asperities
then increases allowing a greater contact pressure. From macroscopic tests, it is thus possible to
obtain a law relating gap to contact pressure.
Possible functional representations of the pressure/gap relation are linear, power series or exponential
laws, illustrated in figure 3.4.

3.1. MODELING CONTACT FRICTION INTERACTIONS 81

Figure 3.4: f:CFI_CM_ContFric_ClawsClassical contact laws, see section 3.3 for implementations

In practice, the contact pressure is applied to a deformable body. Assuming a certain height for this
body, its stiffness ke can be defined. The measurable displacement is related to pressure by

q = g(p) + p
S

ke
(3.3) eq*meas_disp

which is illustrated in figure 3.5.
Extreme regimes can easily be seen in equation (3.3). For a very thin body, the stiffness ke is
very high and the deformation will be mostly due to the deformation of asperities. In such case, a
pressure/gap relation should be used.

Figure 3.5: f:CFI_contactRepresentation of contact between two bodies, body stiffness and asperities

82 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

For many more configurations, the gap induced by realistic pressures will be small compared to
deformations in the body. This regime is the reason for the widespread use of Signorini conditions.
Since the real penetration is small, it cannot be measured accurately against body deformation and
assuming it to be zero thus makes more sense. Furthermore, using it would cause major numerical
difficulties since the accuracy on gap increments would need to be much higher than the accuracy
desired for global motion.
Functional representations of contact pressures are also called penalization when the function is
seen as a numerical tool rather than the result of an homogenization due to scale separation. In
such case, gaps obtained in the simulation are (incorrectly) seen as numerical approximations. A
relaxation of the Lagrange constraints is thus performed, authorizing interpenetration whose trade-
off is the addition of a force linked to the violation of the constraint. The best interpretation is
obtained energetically, where the relaxed constraint violation is generates a highly energetic term.
Consequently, the mechanical solution will only show limited violations of the constraint.
It is noted here that the zero gap value that would be used in a Signorini model does not nor-
mally correspond to zero pressure, the contact of the mean smooth surfaces considered in this case
corresponds to a state where some asperities are already into contact.
Using such laws, contact forces can be condensed on the displacement, making mechanical resolution
much simpler. Contact law parameters must however be identified experimentally which may be
difficult, whereas Signorini requires numerical adjustments. Contact mechanism is well assessed, and
both Lagrangian and functional formulations have their adepts.

Practically the chosen contact model must be capable of properly transmitting pressure fields through
the interface. To behave physically, the contact model should generate interpenetration at the
expected scale and provide a coupling stiffer than the normal compression of the structure observed
from the interface. If these aspects are respected, the structure will be able to see proper pressure
fields at its interface.
It can be noted that non-linear functional representations, such as the exponential law (section 3.3
) provide tangent stiffness fields varying with the gap, over the surface thus reflecting in the modal
domain the effect of loading on the surface. Other laws, like the linear functional law or exact
Signorini will provide the same tangent state whatever the contact pressure distribution if the contact
surface remains identical. In such case, non-linear simulations are necessary to evaluate the effect of
load variation over the surface.
One should also note that in finite element simulations, the appropriate model will depend on element
size with, functional representations being more appropriate for small elements. More generally,
computation with compatible meshes should be preferred. Contact simulation with non conforming
interfaces can generate peculiarities that should require specific care, at least verification from the
user.

3.1.3 Regularized friction modelss*s:CFI_CM_fricreg

3.1. MODELING CONTACT FRICTION INTERACTIONS 83

Friction behavior is more complex, and the Coulomb law, as simple as it is, does not satisfy the
needs of everybody.
On the first hand, regularization methods can be employed to relax the Coulomb law for zero sliding
velocities. The idea is then to penalize low sliding velocities through the introduction of a slope at
the origin, introducing a parameter kt, so that{ ∥ {fT } ∥ = kt∥ {w} ∥ if ∥ {w} ∥ < µ

kt
∥ {fN} ∥

∥ {fT } ∥ = µ∥ {fN} ∥ else
(3.4) eq*CFI_CM_coulombreg

as shown in figure 3.6.

Figure 3.6: f:CFI_CM_ContFric_coulombregSample Coulomb law regularizations

The basic regularization given by equation (3.4) is not perfect. First the threshold level will depend
on the contact pressure
as its regularity is low, indeed, it is not differentiable at its transitions. An arctangent law can be
used to alleviate the problem,

∥ {fT } ∥ =
2µ∥ {fN} ∥

π
arctan (kt∥ {w} ∥) (3.5) eq*CFI_CM_coulombreg_arctan

Two main drawbacks exist with such regularization. First, parameter kt does not have a clear phys-
ical meaning, so that its value is difficult to determine. In particular, when dealing with distributed
contact on large surfaces, the contact pressure will be shown to have major variations over the
surface. The use of a constant kt may thus be a problem.
Second, the regularized contact laws loose their static capability. In (3.4), a case with no sliding
velocity implies no friction force. This is not compatible with stuck states when friction force is
needed to maintain the sliding velocity to zero. Only stick-slip transition can then be approached
for a globally sliding configuration.

84 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

3.2 Numerical implementations*cont_num

This section aims at presenting the algorithms implemented in the contact module for SDT.

3.2.1 Contact friction between 3D surfacess*cont_3d

This section aims at presenting how the contact-friction models are be applied to a 3D finite element
model using the contact module notations. The main idea to keep in mind is that the relevant
contact information is the pressure field transmitted between surfaces.
The first feature to implement is the gap between two solids, as presented in figure 3.1. A slave/master
strategy is commonly employed, so that the gap is evaluated by the projection of a contact point of
the master surface onto the slave surface.
Practically, the gap between two surfaces is defined as the relative displacement along the contact
normal N with a possible offset g0, as

{g} = N.(uslave − umaster)− {g0} (3.6) eq*gap_def_2

For a 2D application, as illustrated in figure 3.2.1, contact point A is projected as A’ on the slave
surface, defining the gap as distance AA’. For a displacement u, the displacement of A’ is expressed
as a combination of the displacements of B and C, which are nodes of the slave surface model.

f:CFI_CM_Num_gapcompute_2df:CFI_CM_Num_gapcompute_3d

Figure 3.7: f:CFI_CM_Num_gapcomputeIllustration of gap computation for finite element models for 2D and 3D contact

For a 3D application, as illustrated in figure 3.2.1, the computations become more complex in im-
plementation. This case is illustrated in more details as it corresponds to the actual implementation
in SDT contact module.
Once master and slave surfaces are identified, the so called contact points must be chosen. They will
be the points where contact-friction forces will be actually computed for the mechanical equilibrium.
In practice, they are points of the master surface, typically, the surface nodes are chosen, or in
our case, the Gauss integration points of the underlying elements (red dots in figure 3.2.1). The

3.2. NUMERICAL IMPLEMENTATION 85

interest in choosing Gauss points for contact resides in the fact that an element-wise handling is
permitted which allows usual integration rules to be employed and simplifies handling of surfaces
for the definition of contact pressures.
The identification of the projected A’ of contact point A is referred as the pairing operation, as each
contact point of the master surface must be paired to the slave surface depending on its configuration.
In practice, each contact point is first paired to an element of the slave surface, found as being the
element in intersection with the outer normal of the contact point. The projected point A’ is then
expressed in position as a linear combination of the slave element points, B, C and D, which is
commonly named mapping. Points B, C and D ∈ NSe the set of nodes of slave element e, they are
computed using the shape functions of the slave element. They can be directly exploited, writing

uA′ =
∑

xk∈NSe

ξk(A
′
)u(xk) (3.7) eq*projectedgap

where ξk(A
′
) are the coefficients relating the position of A’ in e.

The gap defined by equation (3.6) can consequently be expressed for a contact point mj as

gj = N.

u(mj)−
∑

xk∈NSe

ξk(A
′
)u(xk)

− gj0 (3.8) eq*projectedgap_GO

In practice, the gap will be expressed at the contact points, but obtained from the mesh deformation
u described by the DOF vector q. The practical equation to be exploited is then for a contact point
j,

gj = N.

 ∑
xk∈NMe

(ξk (A) qk)−
∑

xk∈NSe

(
ξk(A

′
)qk

)− gj0 (3.9) eq*projectedgap_nodal

where NMe (resp. NSe) are the master element nodes containing (resp. the slave element nodes
paired) with contact point j. ξk(A) (resp. ξk(A

′
)) are the coefficients relating the position of contact

point A in the master element (resp. of the projection A
′
of contact point A on the slave element).

qk is the displacement of node k.
Equation (3.9) is a linear combination of the system DOF, so that it can be summarized using an
observation matrix [CNOR]. The gap vector expressed at each contact point is then written

{g}Nc×1 = [CNOR]Nc×N {q(u)}N×1 − {g0}Nc×1 (3.10) eq*cnor_def

noting N the number of system DOF, and Nc the number of contact points.
The generalized force resulting from the gap-pressure relationship, with the gap defined at each
Gauss point by equation (3.10), is then defined as

{q̂}T {fN} =

∫
Γ
û(q̂)NpdS ≃

∑
e

∑
j

{û(q̂)}T {N} p(xj , q)ω(e)
j J (e)(xj) (3.11) eq*fn_numer_def

86 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

where fN is the generalized contact force, p the contact pressure, q̂ a virtual displacement, q the

displacement, x
(e)
j are the integration points of current element e, J (e)(xj) the Jacobian of the shape

transformation (surface associated to each integration point) and ω
(e)
j the weighting associated with

the integration rule of element e.
The use of observation matrix [CNOR] is also possible, so that in practice the generalized contact
force is expressed as function of the local contact pressure as

{fN}N×1 = [CNOR]
T
N×Nc

{
ω
(e)
j J (e)(xj) p(xj , q)

}
Nc×1

(3.12) eq*fn_numer_def_practice

The computation of the sliding velocity requires the computation of the differential velocities of the
slave and master surfaces,

{w} = T.(u̇slave − u̇master) (3.13) eq*sliding_vel_defintion

where T represents the directions in the friction plane, defined as orthogonal to the contact normal
N . T can consequently represent two directions, and the sliding velocity vector be of size 2Nc. The
same developments than for the computation of the gap can be performed, leading to the generation
of a tangential displacement observation matrix [CTAN], from which the sliding velocity is

{w}2Nc×1 = [CTAN]2Nc×N {q̇}N×1 (3.14) eq*ctan_def

and generalized friction forces can be recovered, from the local friction constraint ftj

{fT }N×1 = [CTAN]
T
N×2Nc

{
ω
(e)
j J (e)(xj) ftj(p(xj , q))

}
2Nc×1

(3.15) eq*ft_numer_def_practice

In practice the [CTAN] matrix is expressed sequentially on both local directions of the friction plane,

[CTAN]N×2Nc
=
[
[CTAN]1N×Nc

[CTAN]2N×Nc

]
(3.16) eq*cont_3d_11

3.2.2 Eulerian sliding formulations*cont_euler

For applications where an externally driven motion exists, the relative displacement of slave and
master surfaces becomes a combination of a rigid displacement and a vibration field. In the case
where the enforced motion is in the main friction direction, it can be convenient to switch to an Euler
description for the external motion. In such formulation, the material is considered to be moving
inside a fixed mesh. Additional terms are thus added to the relative displacement observation. The
significant benefit is that matching and observation matrices can be generated once.
In practice, a drive speed in the sliding motion direction is added to the relative velocity observation.
For rotating devices, one considers a rotating local frame. The rotation effect must then be directly
taken into account in the system mechanical equations, which will be referred as an Eulerian formu-
lation. As proposed by Moirot

moi1
[24], the mesh will remain fixed while the disc material rotates inside.

Numerically, the continuous displacement u of the disc can be expressed in the rotating frame as

u = u(r, θ(t), z, t) (3.17) eq*rot_frame

3.2. NUMERICAL IMPLEMENTATION 87

The frame is considered to rotate at a constant velocity Ω, around the ez direction. As the time
span possible from the transient simulations provided in chapter ?? is in the order of the tens of
milliseconds the effect of the disc slowing down is neglected, so that

θ(t) = θ +Ωt (3.18) eq*rotating_angle

The velocity of the disc can then be derived from equation (??) considering the total derivative of
u, which implies the variations of u as function of its time dependent parameters and the rotation
of the base vectors,

v =
du

dt
=
∂u

∂t
+
∂u

∂θ

∂θ

∂t
+Ωez ∧ u (3.19) eq*ubasederive

which can be simplified using (3.18),

v =
∂u

∂t
+Ω

∂u

∂θ
+Ωez ∧ u (3.20) eq*ubasederive_simple

The sliding velocity is the difference between the disc velocity computed in the rotating frame in
equation (3.20) and the velocity of the pad defined in the fixed frame, so that

w = vpad − vdisc =
∂upad
∂t

− ∂u

∂t
− Ω

∂u

∂θ
− Ωez ∧ u (3.21) eq*rotating_sliding_vel

The disc rotation provides a natural sliding direction. It was thus chosen in this work to ignore
radial velocities. The projection of equation (3.21) on eθ yields

wθ = (vpad − vdisc) eθ −
(
Ω
∂u

∂θ

)
eθ +Ωu · er (3.22) eq*rotating_sliding_vel_actual

where the product (ez ∧ u) · eθ from the projection of equation (3.21) on eθ is simplified as the
projection of the positions on the radial direction.
In (3.22), the sliding velocity can be decomposed in three contributions from left to right a vibration,
convection, and rotation terms can be observed. The first one comes from the fixed mesh vibrations,
which are actually computed on the system. The rotation term is constant and only depends on
the mesh original topology. The convection term is more difficult to implement as it implies spatial
derivations in cylindrical coordinates with a mesh in Cartesian coordinates. This term is thus ignored
in

lor1
[25].

Within an element, displacement u is related to degrees of freedom q through shape functions N

u = Nq (3.23) eq*DOFinterp

the convection term is derived as

∂u

∂θ
· eθ =

∂N

∂xj
(q · eθ)

∂xj
∂θ

(3.24) eq*convection_derive

88 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

where xj represents the Cartesian directions.

In the contact implementation used for this work, shape function utilities of SDT are used to generate
an observation matrix [CNθ] relating convective contributions of the sliding velocity to the vector of
DOF q as in equation (3.24).
In practice, the sliding velocity is thus computed using

{wθ}Nc×1 = [CTAN]Nc×N {q̇}N×1 +Ω [CNθ]Nc×1 {q}N×1 +Ω {r}Nc×1 (3.25) eq*rotating_sliding_vel_practice

where the tangent displacement observation matrix [CTAN] has been projected on the tangential
direction eθ, and {r} is the radius of each contact point to the rotating frame origin. The names
use for generalized strain components are wutt for Ω [CNθ]Nc×1 {q}N×1 and wrg for Ω {r}Nc×1 is
included in the vnl(:,:,2).
The effect of the convection term is interesting to interpret, it accounts for the fact that the disc
has a static Eulerian deformation due to friction. The disc slows down entering the pad area and
accelerates when existing. The effect is obviously a linear function of the friction coefficient.

The disc rotation also has an effect on the expression of the acceleration for the formulation of the
mechanical equilibrium. The acceleration of the disc is defined as

a =
dv

dt
(3.26) eq*rotating_accelerationdef

which is obtained by deriving equation (3.20),

a =
∂2u

∂t2
+ 2Ω

(
∂2u

∂t∂θ
+ ez ∧

∂u

∂t

)
+Ω2

(
∂2u

∂θ2
+ 2ez ∧

∂u

∂θ

)
− Ω2 (u · r) (3.27) eq*rotating_acceleration_cpted

where r is the projection vector on the tangent plane {er; eθ; 0}.
Equation (3.27) presents several additional terms to the displacement acceleration ∂2u

∂t2
. From left

to right, a gyroscopic damping associated to the first order time derivatives of u (2Ω factor), a
gyroscopic stiffness associated to the θ only derivatives of u (Ω2 factor) and a volume centrifugal
load are identified.
The mechanical equilibrium equation should then be altered to stand for all rotational effects in the
disc. In practice however, the disc rotation velocities targeted are rather small – a few rad/s – so
that all gyroscopic and centrifugal terms are neglected, for squeal applications, thus leading to

a ≃ ∂2u

∂t2
(3.28) eq*rotating_acceleration_simple

Adjusting rotation related terms in the equilibrium equation is a perspective for future work.

3.2. NUMERICAL IMPLEMENTATION 89

3.2.3 Frequency domain linearizations*cont_freq

When characterizing a non-linear system in the frequency domain, the most common approach is to
consider the system linearized around a deformation state and compute the modes of the linearized
system. The linearized model is then called tangent to the said deformation state. This strategy is
of course limited, as linearizing in the vicinity of deformation states can only be relevant for very
small deformations from the targeted working point.
The expression of the system linearization strongly depends on the chosen contact formulation. For
Lagrangian formulations, the definition of the tangent state only depends on the surface effectively
in contact, as a contact point is either open (no contact) or closed (in contact). The open case
generates no contact stiffness, while the closed case generates an exact continuity constraint for the
normal displacement at the interface.
Constitutive contact formulations are defined as function of the gap, such that a tangent state can
be derived for each contact point by deriving the gap/pressure relation as illustrated in figure 3.8.
It should be noted that the contact stiffness differs at each contact point and depends on the local
gap.

Figure 3.8: f:CFI_CM_ContFric_Num_CTANGlawIllustration of tangent contact states at a given pressure state

At a given contact point i the contact stiffness kci is defined by the derivative of the pressure gap
relationship,

kci(q) = ωiJ(xi)
∂pi(q)

∂q
(3.29) eq*defTanC

where pi is the pressure at contact point i, J(xi) the corresponding surface, and ωi the Gauss weight-
ing coefficient. Using the gap observation equation (3.10) and the force restitution of equation (3.12),
the tangent contact stiffness matrix Knlc(q) is recovered,

Knlc(q) = [CNOR]
T
[
\ωiJ(xi)kci(q)\

]
[CNOR] (3.30) eq*KCN

90 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

Knlc is therefore symmetric positive definite and can be used for real and complex modes.
The effect on the system itself is a perceived stiffness variation occurring at each point of the
contacting interfaces. The distribution of contact stiffness can then show large variations over the
surface.

The definition of a tangent friction state is more difficult, as it couples normal and tangential
directions, it is typically non-symmetric – thus being a common source of instability.
The nature of friction as written in equation (3.2) shows that a variation of contact force has a
direct effect on friction force, while a variation of the friction force may occur without effect on the
contact force. This non symmetric notion is illustrated in figure 3.9 where stiffness coupling matrix
topologies are illustrated for a basic case.

In the case of a sliding state, the friction force is explicitly defined and only depends on the contact
force at the same point. The tangent friction is then the tangent contact (3.29) scaled by the friction
coefficient µ, linking the normal and tangent displacements for complex modes. For real mode
computation, since the tangent displacement is free for a fixed contact state, no stiffness is added.
The tangent friction coupling stiffness Kslide

nlf for sliding states is defined as

Kslide
nlf =

{
0 for real mode computation

[CTAN]
T
[
\µkci(q)\

]
[CNOR] for complex mode computation

(3.31) eq*TangFricSlide

The formulation of tangent friction matrices of equation (3.31) is very classical, and is commonly em-
ployed under the small sliding perturbations formulation. This was used by Moirot

moi1
[24], Lorang

lor1
[25]

for brake squeal applications, or by Vola et al.
vol01
[26] to study rubber/glass instabilities in sliding

steady states.

Sticking friction state is very different in application. The basic Lagrangian approach will consider
an exact continuity constraint of the tangential displacement at the interface, thus making it a
bilateral constraint. Taking such pattern into account is critical for the complex modes as a physical
resistance to the tangential displacement occurs. For sliding to happen, the friction force must
increase up to the sliding threshold, this friction force variation must then be reproduced.
A functional approach can be used, which relaxes the Lagrange constraint. The friction force is
however unknown inside the Coulomb cone, and further studies are necessary to characterize the
stiffness coupling levels and the system sensitivity. Experiments are suggested by Bureau et al.

bau2
[27]

for non metallic materials. Ultrasonic measurements as done by Biwa et al. can also be a possi-
bility

biw01
[28]. In particular Biwa proposed a link between the sticking state stiffness and the interface

material properties.
The strategy chosen here is to consider the Coulomb cone limit, characterized by the contact force
level, illustrated in figure 3.2. A proportional relationship linking the tangent friction stiffness level
and contact levels is set, using parameter κ. The stiffness behavior will thus be close to microslip
patterns, occurring for low vibration levels. Obviously κ, which has to be somehow identified, will

3.2. NUMERICAL IMPLEMENTATION 91

verify

0 ≤ κ ≤ µs (3.32) eq*nu_elastic_friction_def

The tangent friction coupling stiffness Kstick
nlf for sticking states is then defined for both real and

complex mode computation as

Kstick
nlf (q) = [CTAN]

T
[
\κωiJ(xi)kci(q)\

]
[CTAN] (3.33) eq*TangFricStick

To illustrate the effect of the different tangent contact-friction matrices presented here, an example
based on a very simple problem is presented. The basic model given in figure 3.9 features two
cubes in vertical contact. For illustration purposes, the degrees of freedom are segregated by their
direction, 1 and 2 define the horizontal directions while 3 is the vertical normal direction, in which
contact is defined.

Figure 3.9: Tangent contact-friction matrix topologies on a simple case. Direction 1,2 are horizontalf:contactTOPO
(friction plane). Direction 3 is vertical (contact direction). From left to right, cube model, tangent
contact coupling, sticking friction coupling and sliding friction coupling matrices

Figure 3.9 presents the topologies of the tangent contact-friction matrices expressed on the master
surface DOF. The tangent contact matrix (3.30) couples the normal directions, here the third one,
as shown in figure 3.9. The matrix is symmetric positive definite and used for real or complex mode
computation.
The tangent friction matrix (3.33) for sticking states is plotted in figure 3.9. It couples directions 1
and 2 independently, is symmetric positive definite and is used in real and complex modes compu-
tation.
For sliding states, the tangent friction matrix (3.31) is shown in figure 3.9. The un-symmetric
coupling is clearly observed as direction 3 is coupled to both directions 1 and 2. A deformation
along 3 has an effect on directions 1 and 2 but not the other way around.

92 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

3.2.4 Surface Contact with large displacements*ScLd

Partial support of large displacement surface contact problems is being implemented for point (node
or Gauss) to surface contact (look for the ScLd tag) . The generalized strain stored in unl is
xp,yp,zp, g,r,s,ielt,wjdet,n3x,n3y,n3z

corresponding to 3 strains and 8 internal states. The 3 strains are the current position of the contact
point obtained as xp = xp0 + uxp. The gap is the first internal state and is counted as positive if the
point is outside the surface (there actually is a gap rather than penetration). r, s give the position
within current the triangular element of C index ielt. wjdet is the weight associated with the point
needed to apply a load and n3i are the components of the normal vector specifying the direction of
the normal load.
The unl0=unl(:,:,2) stores xp0,wjdet,n3x,n3y,n3z which do not change. g of the previous time
step which can be used for laws that use time derivatives of g. r, s, ielt of the previous search which
is used to speed search of the next point.
A residual call performs the following steps

� standard (pre Fu call) observation of the point position as xp = xp0 + uxp. In the case of
Eulerian rotation. vp = [c] {q̇}+Ω [cNθ] {q}+Ωr

� non-standard (within the Fu call) observation of current element node positions .xyz s and
.cDofPos s.

� search of positions within the triangular surface r, s and gap. The surface element is assumed
to be oriented with an outgoing normal as standard in SDT, thus defining the gap sign.

� If point as moved out of current surface, use of .Adjacent s table to update the matching
surface.

� update of .b matrix indices and coefficients to correspond to a relative unit force between the
node and the surface.

� compute 3 components .snl giving normal and potentially friction force.

3.2.5 Line contact for large displacements*LcLd

This unsupported development is found in oscar panto BBeam.

3.3 Implemented contact and friction laws (SDT contact)s*cont_laws

3.3. IMPLEMENTED CONTACT AND FRICTION LAWS (SDT CONTACT) 93

General parameterss*cont_laws_gen

This functionality is distributed as part of the SDT contact. For general theory see section 3.1.2 .
The current chandle implementation (SDT ≥ 7.4) uses mex files and uses the convention of positive
pressures for positive overclosure (opposite of gap −g). Observations of overclosures are thus of the
usual form −g = unl = [c] {u} + {unl0}. For sliding, the convention of using tangential observation
and commands with the same sign convention give contact forces with a minus sign.
For chandle runtime formatting, the implementation considers Gauss points with 3 gap strain
components g = uN , uT1, uT2 and possibly xxx (unllab={’gn’;’gt1’;’gt2’;’utt’}).
For 3 strain velocities vN , w1, w2 the formulation is given in (3.25)

pN
pt1
pt2

 = f


uN
uT1
uT2

 ,


vN
w1

w2


 (3.34) eq*cont_laws_comp

Laws are selected using a URN combining normal (see sdtm.enum(’nlCtc’)) and tangent laws (see
sdtm.enum(’nlSli’)) .

� n3e13 tabular normal n1 and arctan Coulomb e13. For non-tabular laws, constants used in
the laws detailed below are ordered from opt(10) as Kc lambda Mu CtLin kappa (depending
on the law only some parameters may be used). For tabular laws, the parameters can be used
to build the table and are stored as fields of NL.Fu.

� need document of Eulerian rotation used for squeal and rail/wheel contact.

The nlutil(’@Ctc’) subfunction implements conversion of standard combinations of parameters
to tabular laws

Ctc=nlutil(’@Ctc’);

Ctc(’urn’,’n1s13{Kc1e12,Lambda2}’)

Older versions use .m file implementation, gaps and not overclosures and the offsets, g = [c] {u} +
{cqoff} is stored in field .cqoff. Laws are selected using the ContactLaw value listed below.

Bilinear contact law, 1,n1 : linears*cont_laws_lin

The simplest contact representation is to apply a linear reaction force to contact points with negative
gaps. The resulting law is bilinear, expressing contact pressure at a contact integration point i as

p(xi) =

{
0 if gi ≥ 0

kc(−gi) if gi < 0
(3.35) eq*cont_laws_lin_1

This law has a single parameter kc (in Pa/m, or N/m3).

94 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

The contact stiffness for tangent contact states can thus have two values depending on the gap at
contact integration point i

kci(−gi) =
{

0 if gi ≥ 0
kc if gi < 0

(3.36) eq*cont_laws_lin_2

kc, of input name Kc, can be set to Val in Fu as a string of format ’Kc Val’ or as a scalar of value
Val.

Exponential contact law, 2 : exponentials*cont_laws_exp

The exponential contact law applies a non linear reaction force for all gaps. It is expressed at a
contact integration point i as

p(xi) = pze
λ(−gni) (3.37) eq*cont_laws_exp_1

The pressure applied is strictly positive for all gaps, but its fast decay for low gap values easily
generates negligible values. Exponential increase of the pressure as function of the gap provides
reasonable behavior in terms of penetrations for large gap variations over a surface. Convergence can
become difficult to obtain for very fast varying contact conditions since penetration overestimation
can lead to numerically infinite forces.
This law has two parameters, pz in Pa being the pressure at zero gap (curve offsetting as function
of the gap), and λ in m−1 being the scaling factor (curvature of the exponential).
The contact stiffness for tangent contact states at contact integration point i is thus

kci(gni) = λpze
−λgni (3.38) eq*cont_laws_exp_2

The tangent contact stiffness varies with the gap at each points, which allows fine observation of
system sensitivities to contact states in the modal domain.
As the definition of λ can be difficult, the exponential law can be alternatively set with parameter
pe instead of λ. This parameter stands of expected pressure at structural stiffness, and represents
a maximal working target pressure for the model at which one will expect the exponential law to
generate a stiffness density higher than a stiff linear coupling. The estimated stiffness is the same
than for the bilinear law with Kc=-1, and λ is resolved as λ = Kc

pe
. Parameter lambda is then set in

the law after initialization.
Using an exponential law can lead to very high stiffness densities, that for larger gaps may lead
to very high values that would compromise numerical conditioning. It is thus possible to define
a stiffness bound that will saturate the exponential growth after a critical gap value. One then
defines parameter KcMax as the maximum stiffness density allowed to the exponential formulation.
An associated gap gmax = −log(KcMax/pzλ)

λ defines the threshold after which the exponential law is
bounded so that for gni > gmax

3.3. IMPLEMENTED CONTACT AND FRICTION LAWS (SDT CONTACT) 95

p(xi) = −Kcmax (gni − gmax) + pze
−λgmax

kci(xi) = Kcmax

(3.39) eq*cont_laws_exp_1b

pz, of input name pz, λ of input name lambda, and Kcmax can be set to ValP, ValL and ValKM in Fu

as a string of format ’Kc ValP lambda ValL’ or as a line vector [ValP ValL ValKM]. The string
format only accepts defining parameter pe of input name pe instead of lambda. Note that pe and
lambda are mutually exclusive parameters, with the priority set on lambda.

Tabulated contact law, 3 : tabulars*cont_laws_tab

Tabulated contact laws are user defined or built using nlutil(’@Ctc’). Using chandle both linear
an piecewise cubic interpolation are supported. The curves are referenced using a curve identifier
(see sdtweb curve for more details). The table is a gap pressure relationship, with field X being the
gap and field Y being the pressure.
For linear interpolation, a contact point i the output pressure is interpolated between the two gap
values bounding the exact gap, noting G the set of provided gap values in the table

p(xi) = (1− ri)p1i + rip2i
g1i = maxg∈G g ≤ gi
g2i = ming∈G g > gi
ri =

gi−g1i
g2i−g1i

(3.40) eq*cont_laws_tab_1

If gi is outside the table bounds, extrapolation is performed following the slopes of the first or last
table segment, such that if gi is lower than the lower bound g1i and g2i are the first two values of
the table, and if gi is higher than the higher bound g1i and g2i are the last two values of the table.
The contact stiffness for tangent contact states at contact integration point i is taken as the slope
of the segment in which gi is found 

kcigi =
p2i−p1i
g2i−g1i

g1i = maxg∈G g ≤ gi
g2i = ming∈G g > gi

(3.41) eq*cont_laws_tab_2

In case of extrapolation, the slopes of the first or last segments are taken.
The curve must be stacked in the model with a proper .ID field. The curve of ID ID can be assigned
to Fu as a string of format ’CurveID ID’ or as a a scalar ID.
xxx give reference to cube example

Power contact law, 4 : tabulars*cont_laws_pow

Power laws can be used in the same way as exponential laws, for which it can be easier to fit
parameters in some applications.
This law has a list of parameters kpm defining a stiffness density associated to power m as

96 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

p(xi) = max

(
0,
∑
m

kpm(−gni)m
)

(3.42) eq*cont_laws_pow_1

The associated contact stiffness is

kci(g(xi) < 0) =
∑
m

mkpm(−gni)m−1)kci(g(xi) >= 0) = 0 (3.43) eq*cont_laws_pow_2

kpm, of input name kpm, can be set to ValM as a string format kpm ValM or as a 2 colum matrix [m

ValM;...].

Exact Coulomb law, 1, 11 : coulomb stricts*cont_laws_cdyn

The Coulomb law is here expressed dynamically as function of the sliding direction (unidirectional for
1, bidirectional for 11), the friction constraint is a two direction vector at contact point i, expressed
as function of the sliding velocity w (see (3.25)) as

ft(xi) = −µp(xi)∥w∥ w (3.44) eq*cont_laws_cdyn_1

This law takes in input the friction coefficient µ (input name Mu), and optionally the tangent sticking
stiffness parameter κ (input name kappa).
.Fv=’Mu ValM kappa ValK’ was used prior to chandle. .Fu=’n3s13{Kt1e12,Mu.1,kappa.2}’ is
the new format.

Regularized Coulomb law with linear slope, 2, 12 : coulomb regs*cont_laws_creg

The Coulomb law is here expressed dynamically as function of the sliding direction, the friction
constraint is a two direction vector at contact point i, expressed as function of the sliding velocity
w as

ft = −min
(
ct∥w∥, µp

) w

∥w∥ = −min
(
ct, µp(xi)/∥w∥

)
w (3.45) eq*cont_laws_creg_1

The slope is then to the friction force between zero sliding velocity and ∥wi∥2 = µp(xi)/kt. The
saturation threshold thus depends on the level of contact pressure at each contact point.
This law takes in input the friction coefficient µ (input name Mu), the regularization slope kt (input
name CtLin), and optionally the tangent sticking stiffness parameter κ (input name kappa).
µ, of input name Mu, ct of input name CtLin, and κ of input name kappa, can be set to ValM, ValCT
and ValK in Fv as a string of format ’Mu ValM CtLin ValCT kappa ValK’ or as a line vector [ValM
ValCT ValK].

3.3. IMPLEMENTED CONTACT AND FRICTION LAWS (SDT CONTACT) 97

Regularized Coulomb law with arctangent, 3, 13 : coulomb arctans*cont_laws_carc

The Coulomb law is here expressed dynamically as function of the sliding direction, the friction
constraint is a two direction vector at contact point i, expressed as function of the sliding velocity
w as

fti = −2µp(xi)

π
arctg (ct∥wi∥2)

wi

∥wi∥2
(3.46) eq*cont_laws_carc_1

The arctangent shape is here exploited to approximate the friction law, the advantage being that
this function is infinitely continuously derivable thus alleviating potential threshold effects.
This law takes in input the friction coefficient µ, the regularization slope ct, and optionally the
tangent sticking stiffness parameter κ.
µ, of input name Mu, ct of input name CtLin, and κ of input name kappa, can be set to ValM, ValCT
and ValK in Fv as a string of format ’Mu ValM KtLin ValCT kappa ValK’ or as a line vector [ValM
ValCT ValK].

Regularized Coulomb law with scaled linear slope, 4, 14 : coulomb scaledregs*cont_laws_crsl

The Coulomb law is here expressed dynamically as function of the sliding direction, the friction
constraint is a two direction vector at contact point i, expressed as function of the sliding velocity
w as

fti = −min (ct∥wi∥2, µ)p(xi)
wi

∥wi∥2
(3.47) eq*cont_laws_crsl_1

The slope is then to the friction force between zero sliding velocity and ∥wi∥2 = µ/kt. The saturation
threshold is thus independent on the level of contact pressure at each contact point.
This law takes in input the friction coefficient µ, the regularization slope ct, and optionally the
tangent sticking stiffness parameter κ.
µ, of input name Mu, kt of input name CtLin, and κ of input name kappa, can be set to ValM, ValCT
and ValK in Fv as a string of format ’Mu ValM CtLin ValCT kappa ValK’ or as a line vector [ValM
ValCT ValK].

98 CHAPTER 3. CONTACT MODELING, THEORY AND IMPLEMENTATION

4

Function references*hbmfun

Contents

d hbm 101

d tdoe 102

hbmui 103

hbm post 110

hbm solve 114

hbm utils 122

nl spring 124

mkl utils 137

chandle 139

Non linearities list 141

nl inout 143

Non linearities list (deprecated) 146

Creating a new non linearity: nl fun.m 158

nl solve 161

nl mesh 169

spfmex utils 177

nl bset 178

ctc utils 179

p contact,nl contact 188

100 CHAPTER 4. FUNCTION REFERENCE

List of the SDT-HBM module functions

Function Description

d hbm Open source HBM examples
d tdoe Open source time DOE examples
hbm solve Solving tools
hbm post Post process tools
hbmui User interface
hbm utils Maintenance

d hbm

Purpose
Open source examples for HBM

Syntax

d_hbm

TestBeamNL

Simple bending beam with localized non-linearity.

model=d_hbm(’testBoltedJoint’)

d tdoe

Purpose
Open source examples for time experiments.

Syntax

d_tdoe % opens tag list of tutorials

MeshCfg URN definition of meshes

The handling of mesh configuration is done by d mesh MeshCfg. The convention is that the mesh
URN is of the form Mesh:Case:NL. Thus d hbm(0D):DofSet:0Dm1t says that

� the d hbm(’MeshOD’) command is called to obtain the mesh

� the d hbm(’CaseDofSet’) command is called to set case information (loads, sensors, ...)

� the d hbm(’NL0Dm1t’) command is called to set non-linearity information. Here ODm1t refers
to a specific material.

SimuCfg URN definition of time experiment

The handling of time simulation configuration is done by d fetime SimuCfg. Different conventions
are being developed for different types of experiments.
SteppedSine{.5,1,10}:C0{0,15}:C1{2.5,10} is used to characterize stepped sine tests. The URN
is split as follows

� SteppedSine{.5,1,10} gives the target frequencies in Hz.

� C0{0,15} gives the harmonic 0 or static offset. xxx scaling convention

� C1{2.5,10} gives the first harmonic or time signal of the form cos(ωt)

� xxx ’NperPer’,2e3,’Nper’,1,’iteStab’,20

hbmui

Purpose
Graphical user interface for the HBM solver (requires SDT)

Syntax

hbmui

Description
hbmui operates the GUI for HBM simulation procedures including pre, post treatment and simulation
runs.

Commands

Hide

Not do display the GUI while running the HBM module.
hbmui(’hide’);

By default the GUI gets opened when the module is first loaded. Use this as the first call to the
module to prevent the GUI from appearing. The GUI will remain hidden until an explicit call to
hbmui is performed.

Init[,Project,Post,...]

Initializes the GUI and specific tabs. If the tab already exists, the display will be switched to the
existing data.

hbmui init

hbmui initProject

The following command options are supported

� -Reset To reset the full GUI before the asked initialization.

� -resetCurTab To reset the tab specified for initialization.

� -noTab To initialize tab data without actually displaying it.

PARAM[.Tab,UI]

Access to GUI parameter values.
RO=hbmui(’PARAM.’Tab’)’

The output is a struct RO with fields corresponding to the parameter names in the tab Tab, and
values interpreted from the current GUI state. By default an error will be issued if the mentioned
tab has not been initialized. The following command options are supported

hbmui

� -safe Not to generate an error if the tab has not been initialized, but rather return the default
values.

� -r1j To recover the parameter underlying java object.

� .Par To recover parameter named Par only.

Command PARAMUI returns the complete application UI structure.

Set[Project,Post,...]

Script version of GUI parameters sets.
hbmui(’setTab’, struct(’Par’ ,’Val,...));.
Tab is the tab name containing the parameter to set, Par is the parameter name, Val is the value
assigned to the parameter. To recover parameters names, see hbmui PARAM.
To trigger an action linked to a push button, the value do must be assigned, e.g.
hbmui(’setPost’,struct(’refresh’,’do’));

Tabs

104

hbmui

Project

Figure 4.1: Project tab in initial state f:UI_Tab_Project_0

Post

The Post tab handles post-treatment procedures allowing data export and display. In display mode
it is linked to an HBM result object whose state can be altered through the GUI. To be used results
must have been stored in the application.
The initial Post tab is presented figure 4.2,

105

hbmui

Figure 4.2: Post tab in initial state f:UI_Tab_Post_0

It features three sections

� PostEnv Handles the post-treatment environment, namely the selected job, with the possibility
to load one, the iiplot figure number to host display.

� PostSens Handles the observation stack, PostSensList. The first two lines allow handling
the following ones that correspond to the actual observations. The first line proposes an
interactive definition of a new post-treatment, see hbmui PostDlgSensPick. The second one
is header to the list, with the possibility to apply changes to all following list entries regarding
harmonic selection Set harm for all, selection toggle or full observation list deletion. The
table features 5 columns

– Sens Provides the observation set label.

– Type Provides the type of signal, either disp, vel or acc for respectively a displacement,
velocity, or acceleration signal.

106

hbmui

– Harm Provides the harmonics retained for the post-treatment. The input will be treated
as a subset of the job output harmonics. It can set either as a comma separated integer
list, or a token (all, even, odd being supported).

– Out To toggle enabling of the current observation. If unchecked the observation list will
be ignored in the post-treatments.

– In To select the current line as an entry for transfer displays. A maximum of one obser-
vation line can be selected as an input.

– R To suppress the corresponding observation line.

� Post Commands Drives the display options and commands. The following parameters can be
set (presented in the format Tab.Par)

– Post.RespSyn The type of synthesis to be performed, either Synthesized to synthesize
the response on observation with all retained harmonics, byHarm to generate an obser-
vation response per harmonic, or byShape to generate an observation response per time
shape.

– Post.nTSamp Provides the number of time samples for transient displays.

– Post.FreqPlot To select a maximum amplitude response as function of the frequency
plot.

– Post.TimePlot To select a transient response plot at a given frequency.

– Post.FreqPoint To provide a frequency point associated to the transient response plot.

– Post.HarmPlot To select a harmonic contribution bar graph at a given frequency.

– Post.TransferPlot To generate a transfer response between two observations.

The following commands can be launched

– Post.PlotReset To reset the iiplot figure with the current setup.

– Post.PlotRefresh To refresh the display with the current setup.

– Post.PlotPrint To print the the display into a plot, support for automatic reporting is
provided through the Porject tab setup.

– Post.PlotSaveFig To save a figure containing the current display.

– Post.TimeAnim To animate the transient response associated to the current setup.

107

hbmui

PostDlgSensPick

The SensPick dialog box provides tools for an interactive definition of observations based on jobs
stored in the application. When clicking on the PickObs button in the PostSens section of the hbmui
Post tab, the dialog box presented in figure 4.3 opens.

Figure 4.3: f:UI_Tab_Post_SensPickDlgObservation selection/generation dialog

One then gets the possibility to define an observation with the following options

� SensName A string defining the observation name that will be used as label in displays.

� BaseJob The job result with which the observation will be generated, used as context in the
dialog following options.

� The type of observation, to be checked in the list presented below. The choice is exclusive and
will expand the adequate options.

– Sensor set To use a SensDof entry (see sdtweb sensors) that is present in the job
model. Use the PickSensDof button to access the list of available entries and pick one.

– Model set To use an integrated model based element selection. The automated selection
is based on usual model accessible information. On can use a feature (as type of infor-
mation) between EltSet, Mat, Pro, or groupall. Use the Pick a feature button to
access respectively the EltId set list, the MatId list or the ProId list declared on the
model. The groupall feature directly selects all elements in the model and thus do not
need further selection.

108

hbmui

– DOF list To use a model DOF. The Pick DOF button then provides the complete list of
available DOF for the user to pick one.

– Relative A-B To generate an observation based on a relative movement between two
model DOFs, y = q1 − q2. Use the Pick +DOF to access the list of available DOF and
select q1. Use the Pick -DOF to access the list of available DOF and select q2.

� Measure Type To provide the type of signal to generate, either disp for displacement, vel for
velocity, or acc for acceleration.

� Harmonics To provide a sub-selection of harmonics retained for the post-treatment synthesis.
Click on the button defaulted to all to access the list of available choices. Besides the list of
harmonics present in the job result, one can choose all to retain all harmonics, odd to retain
all odd harmonics only, or even to retain all even harmonics only.

� OK To validate the input and proceed to the observation generation.

� Cancel To cancel the current input and close the dialog.

109

hbm post

Purpose
Commands for result post-processing. This functions provides post-treatment commands and han-
dles the HBM result object.

Description

ZTraj[,Get,GetBnl,Set,SetDef]

Trajectory generation as harmonic result structures Zcurve from synthesis of given shapes.

� Command ZTraj generates a harmonic response associated to a given trajectory.
Z=hbm post(’ZTraj’,model,def);

model is a standard SDT-NL model, def is a def curve expressed on the model DOF, typ-
ically a modeshape. The output is a HBM output Z. The model is HBM-assembled and
data are initialized based on model.Stack{info,HBMOpt} or using the default options output
by hbm solve Opt. If the def curve is real, the output will be initialized with the shape on
the c1 harmonic, the pulsation is initialized by def.data(:,1). If complex, the c1 harmonic
is set to the real part and s1 to the opposite of the imaginary part, the pulsation is initialized
by def.data(:,1).

The output of hbm post ZTraj cannot directly be exploited by other ZTraj commands as
an observation (see hbm solve AddPost) must be declared prior to generating the the HBM
results object allowing response synthesis. The following command options are supported

– -res to output the result in .Res format.

– -reAss to force reassembly of the model.

– -TKT to perform model projection on def.TR.

– -harm to specify harmonics to be used for the results format (by default the first harmonic
is used).

– -useq0 in conjunction with -TKT to use the static state model.Stack{curve,q0} in the
trajectory, the static state will increase def.TR prior to projection.

– -q0inTR to detect the zero harmonic in def.TR (as with def.data(:,1)<1), thus ini-
tializing different generalized harmonic DOF for the zero harmonic and the others. This
option is handled internally if useq0 is used.

� Command ZTrajSet updates the HBM results object Z with different harmonics.
XF=hbm post(’ZTrajSet’,XF,RA);
XF is the HBM results object, RA is a structure with field .harm defining the new set of
harmonics.

hbm post

� Command ZTrajSetDef only updates the HBM curve Z with a new trajectory based on the
same harmonic DOF than the initial one.
XF=hbm post(’ZTrajSetDef’,XF,struct,opt,struct,d1);, with XF the HBM results object,
opt the opt structure, d1 the new shape.

� Command ZTrajGet synthesizes and outputs a transient NL trajectory (in the standard
fe timeNL format) based on one of the state of the provided HBM results object.
def=hbm post(’ZTrajGet’,XF,RO);. The following command options are supported

– nTSampval to set the number of time samples to val in the output.

– NoT to generate a trajectory based on the model DOF.

– iModeind to select the state index ind in the HBM results object.

– coefval to apply an amplitude coefficient val to the state.

– NeelUNLval to output the non-linearity observations. Set val to a two digit number [unl
vnl] set to 1 if needed, 0 otherwise to obtain def.FNL.unl and/or def.FNL.vnl.

– initnl to perform and keep initializations necessary to optimized trajectory update by
linear state coefficient application with hbm solve @defUpCoef.

– NoStat to ignore unl0 and vnl0 in the observation and evaluation of non-linear forces.

� Command ZTrajGetBnl outputs the non-linear harmonic forces based on the provided HBM
results object.
bnl=hbm post(’ZTrajGetBnl’,XF,RO);.
XF is a HBM results object, RO is an option structure with optional field .nTSamp to specify
the time sampling number used to evaluate the harmonic non-linear forces.

AddPost

Handles observations declarations for post-treatments from the HBM curve output to the HBM re-
sults object.

hbm post(’AddPost’,job,data); is used to handle outputs stored in the application. job is the
name on which the observation will be applied (entry in PA.Stack). data provides the observation,
it can be of the following types

� A DOF list in numeric format

� An observation struct, with fields .cta an observation matrix and .DOF the associated DOF
vector. struct(’cta’,1,’DOF’,21.03,’name’,’tip’). Appends the SensDof entry in the
model PA.Stack{job}.

111

hbm post

� A model. If field .DOF is present, it is directly used, otherwise DOF are obtained from the
.Node field.

For all cases, a Sens data structure is generated and a SensDof entry is added to the model
PA.Stack{job}2. The GUI then adds the observation to the available observation list.
Manual handling outside the GUI requires the use of a results structure RE as a third argument.
The same operations are performed, the observation list stored in RE.PostSensList being updated
RE=hbm post(’AddPost’,lab,data,RE);.

Init

Initializes the HBM result object.
XF=hbm post(’Init’,UI,ci);.
UI is a variable pointing to the HBM solver output data. It can be left empty, in such case it is initial-
ized by UI=hbmui(’PARAMUI’), or it is a results structure with mandatory fields .Res (see hbm post

ZTraj-Res) and .PostSensList (see hbm postAddPost). ci is a iiplot object that will host the
results display. It can be left empty not to display results.
If results are stored in the application, the HBM result object associated to the current application
state can be recovered using XF=hbm post(’init’).
Manual initialization with no display can be performed from an assembled harmonic model mo1 and
a HBM curve output structure Z using

RE=struct(’Res’,{{Z.name,{Z,mo1}}});
RE=hbm_post(’addPost’,Z.name,mo1.DOF,RE);

XF=hbm_post(’init’,RE,[]);

HBM results object

The HBM results object provides methods to synthesize transfers or transient trajectories based on
a HBM result, it is based on the curvemodel object that is a SDT curve wrapper. The result object
is initialized using hbm post Init.

XF.[GetData,X,Y,Xlab]

Provides access to the resolved content of the HBM result object XF in its current state.
X=XF.X;

Warning: depending on the current object state, recovering the full output can be a very intensive
task and may generate a very large volume of data !
The .GetData method returns the full curve structure synthesized for the current object state. The
other methods only return the field corresponding to their name.

112

hbm post

XF.set

HBM results object options handling.
XF.set(’nTSamp’,100);

For an app linked object, the options are available in the GUI Post tab. This programmatic way
can be used in scripts interacting with the GUI, or with results objects not linked with the GUI.

XF.Stack

Provides access to HBM results context data. The object mode can be programmatically altered
through this way.
XF.Stack’type’=val;
Accepted types for val are

� Freq To handle maximum amplitude frequency responses.

� Time To handle transient responses.

� Harm To handle Harmonic contribution responses.

� FFT-1 To handle FFT of the first harmonic transient response.

113

hbm solve

Purpose
HBM Solver and base utilities commands.

Description

Variables used during the resolution are the opt structure

AFMap

Performs amplitude/frequency response MAPS, possibly in a given subspace.
Z=hbm solve(’AFMap’,model,RO);

model is a standard SDT-HBM model. By default the study is performed on the first harmonic of
the model active DOF. It is possible to provide a customized harmhdof vector or even a reduced
subspace by using a third argument def as a structure with fields

� .TR a structure providing a physical reduction basis, with mandatory fields .TR.DOF the full
DOF vector and .TR.def the Rayleigh-Ritz vectors stored in column.

� .hdof a harmhdof vector based on the generalized DOF defined by .TR.

RO is a structure with fields (that can also be provided in a preemptive way in the RO structure)

� .Freq frequency vector in Hz.

� .Amp amplitude (scaling coefficient applied to the loads). Default equal to 1.

� -bnl to store and output the NL force vector

� -iter to perform resolution iterations. By default the response is based on the response
prediction induced by the non-linear forces generated by the linear response trajectory.

� -z0 to store and output the linear response.

� -itInitstra to alter the initialization strategy, set stra to either 0 to initialize at a given
amplitude by the scaled linear initial state a the first amplitude, or 1 to keep the current
response of the previous state.

� -fscan to perform a direct frequency scan for a given amplitude and interpolate the result on
the .Freq input.

� RO.pList field can be provided, defines the parameters order in a cell array, to be used in the
multiple loop from external to internal. By default set to {Amp, Freq}.

� RO.harm defines the harmonic vector to be used, by default set to 1.

hbm solve

� model.Stack{’info’,’HBMOpt’} Provides a custom opt structure. Beware that many fields
are redefined to perform this resolution.

Output Z is a standard SDT-HBM Zcurve with multiple dimensions corresponding to Hdof, Freq
and Amp.

Assemble[call,init,exit]

Provides and performs SDT-HBM specific pre-post assembly operations. The assembly call to be
passed to fe case is provided by

st=hbm_solve(’AssembleCall’);

AssembleInit and AssembleExit are internal calls handling non-linearity initialization and proper
load definitions.

fe time[,cleanup]

Command fe time is called back by fe timeas the base HBM solver, defined by field opt.Method

in the opt structure.

Command fe timeCleanup performs base post-treatments to the raw solver output and handles
direct storage in interaction with hbmui. By default the output will be stored in the application,
and base results can directly be displayed in iiplot.
This command is usually performed as an internal command at solver exit based on the field
opt.FinalCleanupFcn in the opt structure. The command then expects that the caller uses vari-
ables out, opt and model to respectively store the solver output as a HBM curve output, the solver
running options (opt) and the assembled model used by the solver. An external call is also possible,
using out=hbm solve(’fe timeCleanup’,out,opt,model).
The following command options are supported

� reset to reset iiplot before display.

� NoPlot not to display the results in iiplot.

� NoUI not to store the results in the application.

� ExitFcncbk to perform additional custom operations at the end of the cleanup procedure, the
string cbk will directly be called by the eval function.

� -rethrow to output the result data structure.

� -cfval to provide a specific iiplot figure. If val is not strictly positive the default iiplot
figure (or last active one) will be used, otherwise the figure with given positive handle will be
used.

115

hbm solve

harm[lab,hdof,place,c]

Harmonic handling utilities. This series of functions provide tools for HDOF definition handling and
matching.

� harmHdof defines a harmonic DOF (HDOF) vector.
hdof=hbm solve(’harmHdof’,model,harm);. model is a standard SDT model from which the
active DOF will be recovered, using model.DOF if present, or fe casegetTDof. It is possible to
provide a DOF vector instead of a model. harm provides the harmonics numbers to be used, set
to 1 if omitted. To select only specific time functions, it is possible to use a regular expression
token as a third argument.

� harmC performs HDOF localization utilities.
c=hbm solve(’harmC’,hdof,sdof) provides an observation matrix c to observe harmonic DOf
subset sdof in hdof.
sdof=hbm solve(’harmC’,hdof,sdof,typ,in) respectively provides

– typ=’dof’, in=1 the intersection of hdof and sdof .

– typ=’ind’, in=1 the indices in hdof intersecting with sdof.

– typ=’dof’, in=2 the harmonic DOF of hdof not present in sdof.

– typ=’ind’, in=2 the indices in hdof no present in sdof.

Command option hID performs the match on the time function label only.

� harmPlace Places a harmonic def (defined on a set of harmonic DOF) on the set of harmonic
DOF hdof.
d1=hbm solve(’harmPlace’,hdof,def);.

� harmLab A rather internal subfunction generating time dimension labels.
lab=hbm solve(’harmLab’,1:3).

model=demosdt(’demoUBeam’);cf=feplot;model.DOF=cf.def.DOF;

hdof=hbm_solve(’harmHdof’,model,0:3); % adof, {c0,c1,s1,c2,s2,c3,s3}
hdof1=hbm_solve(’harmHdof’,model,1,’s’); % adof, s1

i1=hbm_solve(’harmC’,hdof,hdof1,’ind’,1);

sdof=hbm_solve(’harmChID’,hdof,’c1’,’dof’,1);

isequal(hdof1,sdof)

116

hbm solve

Opt

Solver options handling. Reference to data fields is provided in opt for initialization and opt for
values used during the solve.

opt=hbm_solve(’opt’);

opt=hbm_solve(’opt fstart=.1 fend=100’,opt);

RA=struct(’fstart’,.5,’fend’,100,’dsmin’,.001);

opt=hbm_solve(’opt’,[],RA);

opt=hbm_solve(’opt’,opt,RA);

Reduce

Performs model reduction with proper handling of non-linearities.
[model,Case,Load]=hbm solve(’Reduce’,model,TR);

model is a SDT-HBM model, TR is a def structure defining the reduction basis.
The model will be fully assembled then reduced, it is possible to provide a pre-assembled model. To
do so, it is necessary to define the associated case by providing it in a third argument. The output
is an assembled reduced model complying with initialization of SDT-HBM resolution procedures.

@abscHBM

Performs a state prediction based on an interpolated curvilinear frequency step.
[Z,opt]=abscHBM(Z0,opt,j1);

Z0 is the initial state provided to the solver, opt is the internal solver structure, j1 is an interaction
indicator.
The outputs are Z a predicted state, and opt with updated curvilinear frequency step opt.dS.
For the first iteration j1==1, the initial state Z0 is output.
For the fixed strategy opt.dsOpt.step==0, the curvilinear frequency step is set to 0.5*opt.dsOpt.dsfix,
and the predicted state is the initial state Z0 with the new frequency.
For the Lagrange interpolation strategy opt.dsOpt.step==1, the curvilinear frequency step is de-
fined as being between opt.dsOpt.dsmin and opt.dsOpt.dsmax and updated to optimize the num-
ber of iterations towards the target opt.dsOpt.iopt. The update is performed by applying a
multiplicative coefficient to the current frequency step opt.dS as the ratio between the optimal
iteration number opt.dsOpt.iopt and the last number of iterations opt.ite. The multiplicative
coefficient is bounded between opt.dsOpt.bmin and opt.dsOpt.bmax. The predicted state is the
result of the Lagrange interpolation of degree opt.dsOpt.Ldeg of the last states at the incremented
frequency.

117

hbm solve

@ATimesZ

Computes the linear dynamic harmonic forces o1=A*z0 in an implicit manner (i.e. without actually
building the dynamic harmonic stiffness matrix).
o1=ATimesZ(model,Case,opt,z0)

The output o1 is the linear dynamic harmonic forces.

@buildA

Initialization and/or generation of the harmonic dynamic stiffness.
opt=buildA(model,Case,opt,Z,i1).
model is a SDT-HBM assembled model, Case is the associated case, opt is the internal solver
running option structure, Z is the current harmonic state; these variables must have been initialized
by hbm solve InitHBM. i1 is the output option:

� i1=0 will output opt with field opt.A initialized as the dynamic harmonic stiffness matrix.

� i1=1 will output opt=A as the dynamic harmonic stiffness matrix.

� i1=2 performs optimized initialization of the dynamic stiffness matrix as a cell array of com-
ponent matrices, so that the frequency dependency can be represented as a weighted sum of
the component matrices. If opt.A is empty an initialization at unit frequency is performed, if
opt.A is a cell array the actual dynamic stiffness matrix is directly output (opt=A).

The frequency is recovered from context, either opt.Opt.fvar==1 and the pulsation is taken as the
last value of the harmonic state (w=Z(end)), or opt.Opt.fvar==0 and the pulsation is directly taken
as w=opt.w.
The output opt is either the running option structure with filled opt.A or directly the harmonic
stiffness matrix.

@buildCHarm

Generation of interlaced harmonic observation or command matrices.
[c,harm]=buildCHarm(c,opt,typ).
c is an observation or command matrix, opt is the internal solver running options that must have
been initialized by hbm solve InitHBM, typ provides the type of matrix c. Either typ=’c’ to declare
an observation matrix, or typ=’b’ to declare a command matrix.
The output is the interlaced observation or command matrix c. Line ordering is interlaced (i.e.)
the sequence is first the harmonics, then the initial line order. harm is the retained harmonics. For
command matrices, Fourier coefficients are applied to the matrix terms.
It is possible to define a field opt.subH with a sub-set of harmonics to be used for the observation
generation, independently from the initial opt.harm field that is used by default.

118

hbm solve

@buildHkt

Generation of time function space.
opt=buildHkt(opt);

opt is the internal solver running option initialized by hbm solve InitHBM.
The output is the internal solver running option opt with updated fields opt.Hkt, opt.dHkt and
opt.Htk = opt.Hkt’, that are the time harmonic components of (1.118). opt.N and opt.harm

(representing k/ν) are mandatory fields.

@buildLoad

Prepares the external load structure for the HBM solver, based on the usual transient Load repre-
sentation of fe time.
Load=buildLoad(Load);

The output has a resolved field .adof providing the harmonic DOF used to described the external
load, a command matrix .b, a field .curve providing the optional variations of external loads with
the frequency.
Load is a load structure complying to time simulations. See fe load, fe load buildu.

@ctaSubH

Integrated generation of a subharmonic observation matrix based on a HBM output curve.
opt=ctaSubH(cta,d0,subH);

cta is an observation matrix, d0 is an HBM output data structure, subH is a sub-harmonic selection.
subH is either directly a vector of harmonics, or a string token set to

� all to retain all harmonics of d0.harm.

� odd to retain only the odd harmonics of d0.harm.

� even to retain only the even harmonics of d0.harm.

The output is the opt data structure with added or updated fields .cta, opt.iadof, opt.idof,
opt.harm, opt.hVect, opt.hId to comply with the subharmonic selection.

@defUpCoef

Optimized trajectory linear amplitude change.
d2=defUpCoef(d2,Amp);

d2 is a trajectory initialized the hbm post ZTrajGet-initnl, Amp is a scalar amplitude coefficient.
The output is d2 the trajectory linearly set to amplitude Amp, relative to d2.coef, the initial am-
plitude.
The trajectory and non-linearity observations are updated using Amp/d2.coef, non-linear forces are
re-evaluated to provide a linearly updated trajectory.

119

hbm solve

InitHBM

The subfunction @intHBM performs HBM solver specific initialization based on a SDT model with
non-linearities. [model,Case,opt,Z0,Zf]=initHBM(model,Case,opt,u,fext);
model is a standard fully assembled SDT-NL model, Case is the corresponding resolved Case struc-
ture, opt is the solver running option structure opt, u is a system state expressed on Case.DOF,
usually a static state, fext is the external Load structure expressed on Case.DOF.
model, Case and fext should be compliant to the SDT-HBM data structures, and can be typically ob-
tained from usual models with the provided hbm solve AssembleCall: [model,Case,fext]=fe case(hbm solve(’AssembleCall’),model);.
The outputs are data ready to be used in HBM solvers, opt is completed, Z0 is the initial state, Zf
is the current harmonic load vector.
The initialization procedure

� prepares the internal solver running parameters,

� prepares system matrices and initializes the harmonic dynamic stiffness structures,

� initializes the initial harmonic state and state buffers for prediction and interpolation,

� builds external forces harmonic vectors,

� builds the harmonic interlaced observation and command matrices of each non-linearity.

@iterHBM

Performs an iterative resolution for a given initial state.
[Z,ki,opt]=iterHBM(ki,Zf,Z,model,Case,opt,j1);

ki is for the moment reset internally and can be provided empty. Zf is the harmonic load vector, Z is
the initial harmonic state, model is the assembled model, Case the corresponding case structure, opt
the solver running options. All these variables must have been initialized with hbm solveInitHBM.
j1 is a step indicator, also used in the base solver to know whether the state buffer has been fully
filled.
The outputs are Z the resolved HBM state, ki the current Jacobian, and opt the internal solver
option structure.

@getZf

Generates the harmonic external forces vector from the Load context. This is used by hbm solve

@resHBM.
Zf=getZf(Zf,opt);.
Zf is the current load data structure, or a resolved harmonic vector. Nothing is performed in the
latter case. opt is the internal solver running option. In particular the current pulsation is found in
opt.w.

120

hbm solve

@outputInitHBM

Initializes the solver output structure, to be filled by hbm solve @outputHBMFcn.
[out,opt]=outputInitHBM(model,Case,opt);

model is unused at the moment, Case is the case corresponding to the harmonic model, opt is the
internal solver running option. These variables must have been initialized by hbm solve InitHBM.

@outputHBMFcn

Output data structure (pointer addressed) filling.
outputHBMFcn(out,Z,opt);

out is an output data structure initialized by hbm solve @outputInitHBM, Z is the current state to
be possibly stored, opt is the internal running option solver.
There is not output associated to this command as input structure out fields are handled by pointer.
The current state is stored if its associated frequency has changed in absolute value by more than
opt.SaveFreq.fStep from the last saved frequency point (out.X2(out.cur(2))). The frequency is
recovered from context, either opt.Opt.fvar==1 and the pulsation is taken as the last value of the
harmonic state (w=Z(end)), or opt.Opt.fvar==0 and the pulsation is directly taken as w=opt.j1.
In this case, opt.j1 is differentiated from opt.w to allow customized handling of the saving strategy.

@resHBM

Computation of the harmonic balance residue and associated finite differences Jacobian.
[r,ki]=resHBM(Zf,Z,model,Case,opt,ki,jite);

Zf is the harmonic load vector, Z is the current harmonic state, model is the harmonic model, Case
is the corresponding case, opt is the internal solver running option, ki is the current Jacobian, jite
is a current iteration indicator.
The outputs are r the harmonic residue, and ki the associated Jacobian.
The Jacobian is computed by finite differences using a dZ amplitude defined by opt.epsi and
initialized at 1e-9. It is computed if ki is empty, or if opt.JacobianUpdate is not null.
It is possible to obtaind the external harmonic forces of the current model by setting Z to empty.
In such case, the non-linear forces will be obtained from model.FNL and summed with -Zf in the
output r.

121

hbm utils

Purpose
Utilities used for HBM development and administration.

Syntax

hbm_utils CommandString

hbm_utils(’CommandString’)

Description
hbm utils deals with the paths handling (Path command), the generation of the documentation
(Latex command) and other utilities.

Path

hbm utils(’Path’) fixes MATLAB path and sdtweb(’ path’) to include DYNAVOIE based on
the result of which(’hbm utils’). The expected directory structure is detailed in section 2.1 .
Note that you should

Help

You can automatically update, your documentation files using hbm utils(’HelpGet’) which will
get a zip file from the server and decompress it into DynRootDir/help. The help contains both the
PDF and HTML files which can be opened with the sdtweb function, for example:

sdtweb(’hbm_utils’) % requires sdtweb >1.50

Note that you possibly have to configure your proxy address in your Matlab preferences (File/Preferences/Web).

Latex,Hevea

The following commands are used by SDTools for the maintenance

� Latex compiles the documentation using pdflatex.

� pdf opens the manual in a browser window.

� hbm util(’HelpPut’) updates the zip file containing the documentation

Verbose Mode

Verbose mode mecanism. Now one can different levels of warning:

hbm_utils(’Verbose_Mode’,-1) % SILENT

hbm_utils(’Verbose_Mode’,0) % NORMAL

hbm_utils(’Verbose_Mode’,1) % VERBOSE

hbm utils

Distrib

DistribGen is used by SDTools to generate a protected copy of DYNAVOIE, which can be sent as
a zip file. DistribPatch is used by SDTools to generate a SDT patch relative to the last reference
version of SDT.

123

nl spring

Purpose
Non linear links/force modeling for time simulation

Syntax

model=nl_spring(’tab’,model);

...= nl_spring(’command’, ...)

Description
nl spring supports non-linear connections and loads for transient analysis. Non linear springs
between 2 DOF (see nlspring). loads which depend on DOF values (see DofKuva, DofV), springs
between 2 nodes in different bases (see RotCenter), etc. ...). A full list of non-linearities is given in
nllist

Standard non-linear simulations are handled by nl solve. Below is a description of the inner
mechanisms of a non-linear simulation with the non-linear toolbox.
After the non linearity definition, a proper TimeOpt is required to set the good fe time calls to
perform a non linear Newmark time integration. A default TimeOpt can be set using nl spring

TimeOpt. It is possible to save transient results on the fly using a properFinalCleanup call,
see nl spring fe timeCleanupCall , and to reload the same results using fe simul fe timeLoad.
The following steps are required for a time simulation

� Definition of non-linear properties. These are stored as pro entries of the model stack. The
associated property function must handle non-linearities which is currently only the case for
p spring and p contact.

A non-linearity is always associated with elements or superelements (typically a celas element.
A given group of elements can only be associated with a single non-linearity type.

The information needed to describe the non linearity is stored in a .NLdata field.

� Model initialization using the an fe case(’assemble’) call in fe time, is followed by the
building of a model.NL stack that describes all non-linearities of the model in a format that is
suitable for efficient time domain integration. This translation is performed by the nl spring

NL command.

� Jacobian computation, see nl spring NLJacobianUpdate.

� Residual computations are performed through mkl utils. The nominal residual call is r=-fc;
mkl utils(’residual’, r,model,u,v,a,opt,Case);.

Supported non linearities

See nllist for supported non linearities, and nl fun to add your own non-linearities.

nl spring

ConnectionBuild

One can define a set of non linear links between 2 parts of a model using a call of the form
[model,idof]=nl spring(’ConnectionBuild’,model,data);

idof is a second optional out argument. It returns the list of DOF concerned by links (it can be
useful in order to reduce super elements keeping idof as interfaces DOF for instance). data contains
all the information needed to define links. It is a 3 column stack like cell array. First column contains
the string ’connection’, the second the name of the non linear link described in the third column
that contains a data structure with following fields:

� .Ci define nodes to connect in first (.C1) and second component (.C2). It can be a vector
of NodeId or a screw data structure (slave nodes of the model nodes via RBE3 links, see see
sdtweb(’fe case#connectionscrew’).

� .link defines how to link component 1 to component 2. It is a 1x2 cell array. First cell defines
the type of link (’EqualDof’ or ’Celas’) and the second gives information about the link. For
celas link it is a standard element matrix row with 0 replacing NodeId :[0 0 DofId1 DofId2

ProId EltId Kv Mv Cv Bv].

� .NLdata (optional) defines non linearity associated to celas link. See the list in list of supported
NL. If this field is not present or empty, only linear link is considered.

� .PID (optional) is a 1x2 line vector that defines PID (second column of .Node matrix, see
sdtweb(’node’) of connected node (1rst column for 1rst component).

� .DID (optional) is the same as above, defining DID (third column of .Node matrix, see
sdtweb(’node’) of connected nodes.

Following example defines a model with a cylinder and a hole in a block. The cylinder is linked to
the block by 3 celas preserving the pivot link.

mo1=demosdt(’demoConnection-vol’); % meshes models

mo1=fe_case(mo1,’fixdof’,’base’,’z==-1’); % clamps the cylinder base

r1=struct(’Origin’,[0.5 0.5 0.5],’axis’,[0 0 1],...

’radius’,.1,’rtol’,.01,’length’,1,’Npt’,-3,...

’ProId’,111,’planes’,[]); % Cylinder-side

r1=nl_spring(’ConnectionCyl’,r1); % defines planes

r3=r1; r3.ProId=1; % Block-side

link={’connection’,’link1’,struct(’C1’,r3,’C2’,r1,...
’link’,{{’celas’,[0 0 12345 12345 1000 0 1e9]}})}; % Defines connection

[model,idof]=nl_spring(’ConnectionBuild’,mo1,link); % builds connection

cf=feplot(model); % displays in feplot

fecom promodelviewon; fecom(’curtab Cases’,’link1_2’);

125

nl spring

def=fe_eig(model,[5 20 1e3]); % computes the first 20 modes

if length(find(def.data<1e-3))>1; sdtw(’_err’,’connection failed’); end

cf.def=def; fecom ColorDataAll % displays modes

See also t nlspring(’2beam’) example.

ConnectionCyl

Utility to fill the .planes field of a cylinder connection in the standard connection screw data
structure format (see fe caseg ConnectionScrew).
dataOut=nl spring(’ConnectionCyl’,dataIn);

The dataIn uses fields:

� .Origin origin of the cylinder axis, .axis orientation of the cylinder

� .rtol radius tolerance for cylinder selection.

� .length length of the cylinder.

� .Npt number of planes (equally distributed on the whole length). If Npt<0, ends of the cylinder
are included in the connection points.

� .ProId ProId of the elements containing nodes to connect.

Figure 4.4: ConnectionCyl fig:conncyl

126

nl spring

InitV

q0=nl spring(’InitV’,model,d0,RO);

InitV computes the initial static displacement and velocity associated to a DOF initial position and
velocity. d0 is a data structure with field .DOF containing the DofId where initial value is applied
and .def containing initial displacement and velocity at this DOF. RO is a optional input argument
data structure with following fields that define:

� .dt time step for time integration.

� .dq increment for initial vel computation.

� .Nv] number of time steps to reach d0.def(1) (displacement is imposed as a 0.5(1− cos) time
function on these time steps).

� .Np number of steps to stabilize at d0.def(1) and d0.def(1)+dq.

If input argument RO omitted, options are get from ’info’ ’initvopt’ Stack entry. If there is no
such entry, InitV parameters are computed using -optim process (see below).
Displacement at q0 and q0+dq is obtained meaning the last Np/10 steps of each stabilization period,
and initial velocity is computed from those 2 displacements to match d0.def(2) at d0.DOF.

[q0,RO]=nl spring(’InitV-optim’,model,d0); can be used to find input parameters RO. Opti-
mization of dt and Np is performed from given or default values. Parameters dq and Nv are kept at
given or default value. First dt is optimized. dt is increased (multiplied by 4) until time integration
of the InitV process diverge and last dt that leads to convergence is kept. Then Np is increased by
100 steps until the deformation is converged on the stabilization periods, that is to say that a criteria
taking in account standard deviation/mean of the deformation and the ratio of the last Np/10 steps
upon previous Np/10 steps on each Np period is less than a tolerance (2.0).

See also t nlspring(’2beam’) example.

NL

model=nl spring(’NL’,model)

This command is used to build .NL field data for time integration from NLdata field in NL p spring

property entries in the input model Stack. The command option -storefnl can be used to specify
the way of computing and storing a non linear effort associated to NL (for those which support it).

NLJacobianUpdate

opt.Jacobian=nl spring(’JacobianCall’) returns the callback used to update or initialize the
Jacobian ki used in iterative methods. This is the low level implementation of calls documented in

127

nl spring

nl solve TgtMdl. The said Jacobian must take non-linearities into account and is thus of the form

kj = [b]

[
∂snl
∂unl

]
[c] (4.1) eq*nl_jac1

the output is controlled by the value of NL.Jacobian.

� 0 gives no Jacobian.

� 1 use finite differences to evaluate Jacobian.

� 2 fixed Jacobian.

For the case of a non-linear spring, the most important gradient of the tabulated law Fu is added as
stiffness between the 2 DOF to the stiffness matrix and the most important gradient of Fv to the
damping matrix.
For non-linear iterations in a Newmark scheme, the Jacobian is given by

ki=(model.K{3}+kj)+ (opt(2)/opt(1))/dt*(model.K{2}+cj) + 1/opt(1)/dt^2*model.K{1};

Accepted command options, associated to variants of the call are

� There are three outputs accessible, being [ki,mo1,C1]=nl spring(’NLJacobian’...).

� -noFact not to factorize the output Jacobian. This is useful if further actions are performed
on the Jacobian after the standard call.

� -TangentMdl to return tangent model. It is assumed that model.K(1:3) correspond to M, C,
and K (in this order). u and v variables of caller workspace can be needed.

� -TangentMdl-back to return a superelement containing the tangent matrices.

� -TangentMdl-back-sepKj to return a superelement containing the tangent matrices split by
non linearities.

� -ener to compute for each def stored in model.d1 def structure (that is typically computed
modes), some associated energies:

– freq frequency in Hz.

– damping damping ratio: (ϕTj [C]ϕj)/(2ωj).

– enerK total strain energy: ϕTj [K]ϕj .

– enerC ϕTj [K]ϕj .

128

nl spring

– NLlink-enerK strain energy for each NL link: ϕTj [KNLlink]ϕj .

– NLlink-enerK for each NL link: ϕTj [CNLlink]ϕj .

SetPro

model=nl spring(’SetPro ProId i ParamName1 Value1 ...’,model)

This command is used to change some nl spring properties parameters. i is the ProId of corre-
sponding p spring property, ParamName the name of parameter to change (k for il(3), c for il(5) or
the field name in NLdata) and Value the value to assign.
It is possible to define a new property by specifying an NLdata structure in third argument: model=nl spring(’SetPro

ProId i’,model,NLdata). If the property already exists, the NLdata is interpreted as a string of
parameters and parsed to define the fields specified in the given NLdata to the existing one. Com-
mand option Edit allows directly merging the existing NLdata to the provided NLdata with priority
given to the new fields.

model=nl_spring(’Demo1DOF’);

% define a non linearity with partial definition of parameters and other by default

NLdata=nl_fun(’db data 4’) % standard NLdata defintion

% NLdata has fields data, Jacobian (by default) and type

% set in model

model=nl_spring(’setpro proid201’,model,NLdata);

% edit the nl_fun nl by string keyword

model=nl_spring(’setpro proid201 data2’,model);

% edit the nl_fun with struct input

% property will be parsed using nl_fun(’paramedit’)

model=nl_spring(’setpro proid201’,model,struct(’Jacobian’,2));

% field Jacobian has been edited, other fields are kept unchanged

model.Stack{end,3}.NLdata

model=nl_spring(’setpro proid201’,model,struct(’NewField’,’test’));

% you can see that in this case NewField was not set

% as it is not referenced in the nl_fun parameters

model.Stack{end,3}.NLdata

% Force the with struct input with no check

model=nl_spring(’setproedit proid201’,model,struct(’data’,10,’NewField’,’test’));

% in this mode the NewField is propagated regardless of the

129

nl spring

% standard nl_fun input

model.Stack{end,3}.NLdata

Standard NLdata structures depend on the non-linear function, see nllist for more details. They
can be obtained through the nl function command db, see nl fun for more details.
In the case where

GetPro

pro=nl spring(’GetPro’,model)

This command is used to get non linear properties in the model stack.

� Command option ID allows getting a specific non linear property by specifying its ProId.

� Command option type‘‘nl fun’’ allows getting the non linear properties of a specific type.
See nllist for more details on types of non-linearities.

Follow

The Follow mechanism can be used to observe some variable evolution during the time integration.
opt=fe simul(’Followi’,opt);

1st Follow consists in monitoring the number of iteration, the residual norm and displacement
increment norm at each time step.

model=nl_spring(’Demo1DOF’)

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

opt=fe_simul(’Follow1’,opt); % niter norm(r) norm(dq)

def=fe_time(opt,model);

2nd Follow consists in monitoring the def.FNL in iiplot. For the moment the mechanism is differ-
ent (so note that you can’t both tracker niter and FNL), and you only have to specify the field
.FnlIiplot equal to 1 in the ’info’,’OutputOptions’ stack entry of the input model, as in fol-
lowing example :

model=nl_spring(’Demo1DOF’);

r1=stack_get(model,’info’,’OutputOptions’,’GetData’);

r1.FnlIiplot=1; % define FNL tracker

model=stack_set(model,’info’,’OutputOptions’,r1);

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

def=fe_time(opt,model);

130

nl spring

TimeOpt

This command returns usual default TimeOpt for non-linear simulations. By default the output is
the same as the TimeOptNLNewmark presented below. See also fe time for TimeOpt definition details.
Supported TimeOpt commands are

� TimeOptNLNewmark, or TimeOpt to obtain the TimeOpt for NLNewmark simulations. Use TimeOpt-gamma
.51 to introduce numerical damping by directly giving gamma.

� TimeOptStat to perform static simulations (see also fe time nl solve).

� TimeOptTheta to perform time simulations with the θ-method (see fe time). Numerical
damping can be introduced using TimeOptTheta-alpha .05, the specified α value will be
added to θ, so that the coefficient used in the simulations will be θ1 = θ + α.

� TimeOptExplicit to perform time simulations with the explicit Newmark scheme.

The following command options allows setting other TimeOpt fields to their desired value.

� dtval time step.

� tsN number of time steps.

� tendval optional end time

� tInitval initial time.

� AlphaRval a global Rayleigh damping mass coefficient (applied to the model total mass).

� BetaRval a global Rayleigh damping stiffness coefficient (applied to the model total stiffness).

� maxNoutN requests an output subsampling strategy such that only N times equally spread over
the simulation time span are output.

� RelTolval requests a specific relative tolerance for the convergence of iterative schemes.

� -gammaval requests a specific γ coefficient (default to .5) of the Newmark scheme. For the
non explicit versions, β is adapted to ensure unconditional stability of the scheme.

� -thetaval requests a specific θ coefficient (default to .5) of the Theta method.

� -acallstr provides a series of command options applied to the AssembleCall generation.

� -fcleanstr provides a series of command options applied to the FinalCleanupFcn generation.

� -jcallmodel edits the jacobian call to allow late model modification.

131

nl spring

Alternatively to providing all these command options in the command string, one can provide a
MATLAB struct with equivalent fields as an additional argument.
By adding an SDT model as third argument, the generated TimeOpt will be directly integrated in
the model, that will be output.
Sample calls :

% basic call

opt = nl_solve(’TimeOpt dt1e-6 ts3e5 maxNout1e4 -acall"lumpedMass"’);

% call with struct input

RO=struct(’dt’,1e-6,’ts’,3e5,’maxNout’,1e4,...

’acall’,’lumpedMass’);

opt = nl_solve(’TimeOptExplicit’,RO);

% basic call with model input

model = nl_solve(’TimeOpt dt1e-6 ts3e5 maxNout1e4 -acall"lumpedMass"’,[],model);

% call with struct and model input

model = nl_solve(’TimeOptExplicit’,RO,model);

Convergence tests depend on the iteration algorithm and several behaviors can be obtained by mod-
ifying RelTol. In any case the absolute value of RelTol is used for the convergence test application;
its sign is used to determine the convergence test to be used as described in the following.

� For algorithms using iterNewton as IterFcn, as is the case for methods newmark (explicit or
not), NLNewmark, and staticNewton.

– using RelTol > 0 tests the convergence of the mechanical residue, relative to value
opt.nf. If opt.nf is not provided, the scheme takes in input the norm of the exter-
nal forces fc at the first time step, or if zero the norm of the first residue of the first time
step. If still zero, opt.nf is set to 1. This convergence test is the most widespread as it
ensures mechanical stabilization. It is strongly recommended for static computations, or
when using large time steps.

– using RelTol < 0 tests the convergence of the displacement correction, relative to the
current displacement norm. The idea of this mode is to stop iterating if the correction
becomes negligible, this is very useful to limit iterations with little impact on the results
in transient simulations with small enough time steps. This must be used with care as
this criterion does not imply that the mechanical residue is converged at the end of the
time step, it is thus strongly advised to check results convergence.

iterNewton does not support the use of opt.cvg yet.

� For algorithms using itertheta nl as IterFcn, as is the case for method theta,

132

nl spring

– using RelTol > 0 tests the convergence of the velocity field, its correction relative to the
previous iteration velocity norm.

– using RelTol < 0 tests the convergence of the velocity field, and the model.FNL vector,
their correction relative to the previous iteration norm. Stabilization of the model.FNL

field may be difficult to attain and very sensitive as this vector can contain heterogeneous
data, this mode is then not recommended by default, and use of opt.cvg should be
preferred.

iterthetal nl supports the use of opt.cvg, that forces iteration if set to 1. It is reset
to zero at the start of each iteration, but any non-linearity can alter its value by using
sp util(’setinput’,opt.cvg,ones(1),zeros(1));. Each non-linearity can thus internally
test the convergence of its fields of interest and apply a convergence veto if its convergence is
not satisfied.

From standard fe time simulations, the following TimeOpt fields are added or modified

� Jacobian field is modified to take into account non linearities, see NLJacobianUpdate.

� Residual field is modified to take into account non linearities, and to use mkl utils to improve
computation times, see sdtweb mkl utils. This should be initialized by nl spring(’ResidualCall’).

� AssembleCall field is modified, to perform non-linearities initialization after assembly. AssembleCall
is the string passed to fe case, generated by nl spring(’AssembleCall’).

� OutputInit field is modified to also check non linearities and initialize non-linearities related
outputs, this is a callback generated by nl spring(’OutputInitCall’).

� FinalCleanUpFcn field is modified to perform cleanup on non linearities as well, this is realized
through the ExitFcn command option of fe simulfe timeCleanUp (see fe timeTimeOpt), us-
ing ’-ExitFcn"nl spring(’’fe timeCleanUp’’)"’. This should be initialized by nl spring(’fe timeCleanupCall’.

� OutputFcn The output function should be generated by the OutputInit command, since it
handles proper interpolation of output as function of the time step, and requires fine tuning
in the case of non linear simulations. If nl spring handles the OutputInit call, OutputFcn
is thus reset during initializations. Handling of output time steps using a time vector in
OutputFcn is supported.

AssembleCall

The TimeOptAssembleCall must use the -InitFcn callback of fe caseg Assemble to perform ini-
tialization of the non linearities.
Command options are available to tweak the assemble call with minimal user input

133

nl spring

� MVR To adapt the assemble call for preassembled reduced models. This typically removes the
-load command option of the call as this has to be recovered in the MVR itself.

� skipMKL No to transform the model matrices into mkls objects.

� lumpedMass To adapt the mass matrix mattype to 20 and get a lumped mass matrix.

� compose For more complex calls one can redefine from scratch the assemble call line to which
the ad hoc initFcn will be added.

ResidualCall

The TimeOptResidual callback should be a call to mkl utils, that performs optimized matrix vector
products, and the computation of non linear forces handled by nl functions. Command options
allows choosing a call adapted to the type of simulations

� by default a call adapted to the nlnewmark scheme.

� ResidualCallStatic provides a residual adapted to the newton-Raphson schem.

� ResidualCallExplicit provides a residual adapted to the newmark explicit scheme.

fe timeCleanupCall

The TimeOptFinalCleanupFcn callback must use the -ExitFcn of fe simulto perform post treat-
ments of non linearities. Custom options classical to the fe simulFinalCleanup call can be added
either in the command string or as a string in second argument.

opt.FinalCleanupFcn=nl_spring(’fe_timeCleanupCall -cf-1-fullDOF’);

% equivalent call with second argument

opt.FinalCleanupFcn=nl_spring(’fe_timeCleanupCall’,’-cf-1-fullDOF’);

In addition to the standard fe simulFinalCleanup, the following command options are available
(to be specified outside the ExitFcn callback.

� -HDFSave To save the output in a temporary file, and output a v handle pointer to the saved
data. This is useful for RAM optimization matters.

� -HDFfnamefname In combination to -HDFSave, to specify the file in which the output will be
saved.

� -Save To save the output in a temporary file, but keep the results.

� -fnamefname In combination to -Save, to specify the file in which the output will be saved.

134

nl spring

OutputInitCall

The OutputInit callback is locked for internal nl spring use. Several command options are available
that will be forwarded to the OutputInit procedure

� -BlockSaveN To initialize a bufferization of the output of size N. Results will be saved as blocks
containing each N saved time steps.

� -exit To force exit after initialization. This can be used to check the output format without
performing the simulation.

� -postFcn To provide a callback that can tweak the output at the end of the OutputInit

procedure. This can be used for example to initialize out.Post post treatments.

TimeOutputOptions

Fine tuning of fe time output can be achieved by specifying an ’info’,’OutputOptions’ case
entry.
Accepted fields for the OutputOptions structure are

� .FnlAllT if defined and equal to 1, non-linear loads are saved at all time steps.

� .FnlIiplot if defined and equal to 1, non linear loads are displayed in an iiplot figure as curve
FNL. If the display timer associated with this figure does not stop automatically, you can stop
it with cingui(’TimerStop’).

mkl utils

Non linearities are treated by mkl utils mex file. Details are provided in mkl utils.

rheo2NL

OBSOLETE. Use now nl spring NL.
NL=nl spring(’rheo2NL’,model,DOF,offset);

This command is used to convert rheological data into a structure of data understandable for NLforce
command. DOF is the list of the DOF coherent with u and v arguments of NLforce command. Offset
is optional. It is a structure of data with fields .DOF and .def that defined 0 reference for Fu and
Fv tab laws.

tab

model=nl spring(’tab’,model);

135

nl spring

This command is used to convert formal rheological description data stored in model.Stack to
a tabulated law description. The format is likely to change due to optimization of the compiled
functionality in mkl utils (see mkl utils).

BlockSave,BlockLoad

Undocumented intermediate save of a time block for long simulations that do not fit in memory.

136

mkl utils

Purpose
For detailed callback information see sdtweb(’nlspring timeopt’).

Residual

Residual command is used to compute standard residue.
mkl utils(’residual’,r,model,u,v,a,opt,Case); call modifies variable r in memory according
to following standard residue computation (implicit Newmark).

r = model.K{1}*a + model.K{2}*v + model.K{3}*u + b*(snl_fun) + fnl_int -fc;

In this formula, b*(snl fun) refers to the legacy m file implementations (non chandle) which expect
the nl function to fill a unl vector multiplying b (.snl field support was not activated). This
was incorrectly noted -fnl in earlier documentation the minus sign coming from the convention
of considering non-linear forces as external rather than internal (the convention used from now
on). fnl int refers to chandle implementations that match classical conventions : traction leading
to positive stress in continuous mechanics, positive over-closure (negative gap) leading to positive
pressures in contact mechanics.
Typically in fe time computations one has
opt.Residual=’r=-full(fc);mkl utils(’’residual’’,r,model,u,v,a,opt,Case);’;

with fc the time load (resulting from DofLoad entries in model Case) and fnl is the sum of the
non linear efforts (if any) computed directly by mkl utils (rotcenter, mocirc2), in the non linear
functions (see sdtweb nl fun) or in nl spring. mkl utils then calls the adequate nl fun function
(nl spring by default) automatically.

Such call stored in opt.Residual is filled by nl spring(’TimeOpt’) for default simulations.
Model information specifically supported by the residual command are

� opt.Rayleigh if the field exists defines a global Rayleigh damping and opt.Rayleigh(1)*model.K{1}*v+opt.Rayleigh(2)*model.K{3}*v
is added to the residual.

� model.K{2} can be a data structure describing modal damping with following fields:

– .def : MΦ vectors as columns.

– .data : cj modal damping coefficients as a vector. cj = 2ωjζj . A second column has to
be set to zero for transient applications.

– .type : @nl modaldmp handling function for callbacks. The following callbacks must be
handled

mkl utils

* matrix projection tkt = T TKT : tkt=feval(K.type,’getTKT’,K,T,Tt,typ)
with K the implicit matrix, T the right projection matrix, Tt the left projection matrix
(can be empty or skipped if Tt = T T , typ the output type, either imp to keep the
implicit format (by default), or full to recover a full numeric matrix (to be reserved
for small output sizes).

* vector application f = Kq : f=feval(K.type,’getForce’,K,q)
with K the implicit matrix, q a deformation vector.

– .UseDiag : to be set to one if one wants the output of getTKT to be diagonal (as for a
standard dtkt call).

– .K : optional additional damping matrix. This matrix must be in a mkl transposed
v handle format (use v handle(’mklst’,K) to convert a matlab matrix to this format).
Note that model.K{2}.K is taken in account for the Jacobian computation whereas modal
damping is not.

– .defT : the resitution matrix (left side MΦ), that can occur mainly in the case where
a non-symmetric projection has been carried out. E.g., the implicit representation of

T Tl MΦ
[
\2ζjωj\

]
ΦTMTR will use field .def to store T TRMΦ and .defT to store TlMΦ.

Corresponding additional residue term is∑
j [M]ϕj ∗ cj ∗ ϕTj [M]T ∗ v.

� model.NL can be a stack of non linearities. Column 3 provides a structure with the following
standard fields, see nldata.

Typically, fnl is computed by non linearity functions, see nl fun for details on these functions.
The non linear functions are called by mkl utils to provide the value of fnl at a given state. Two
implementations are supported

� An optimized input-output formulation, using observation and command matrices c and b doc-
umented in nldata. The computation of the observation is possible either on the displacement,
the velocity or both, and the command is added to the residual using r = r + b*unl. With
unl a vector depending on the observation (c*u, c v v).

� A used defined addition (older format, that should be only used when the generic b,c format
fails to be relevant. In this mode the non linear function must add fnl by itself, choosing the
sign convention, using a call of type of time(-1,fc,fc-fnl);. One will note that the residue
vector is named fc in the non linear functions.

chandle

chandle objects are used to streamline communication between mex and MATLAB in iterative pro-
cesses. They are used in various nl solve calls and in particular for ModalNemwark and ExpNewmark.

138

chandle

Purpose
chandle objects are used to streamline communication between mex and MATLAB in iterative
processes.
Creation generates a C copy of the matlab array and returns a vhandle.chandle object containing
the ID. Register the chandle object for mexAtExit.

� chandle.numType lists currently implemented chandle subtypes.

DiagNewmark

DiagNewmark is an implementation of the Newmark scheme when assuming a fixed diagonal full
Jacobian as occurs in modal domain transients (explict or implicit).

ExpNewmark

ExpNewmark is an implementation of the Newmark scheme when assuming a fixed diagonal mass
matrix for large explicit dynamic problems.

nl inout

Support for observation performed in C. .iopt for standard integer options.
.N field : Nunl, (c,1),(c,2),cTrans, (b,2),(b,1),bTrans, Nopt[8],Niopt[9],size(unl,3)[10]

.opt field ? tc[1] dt0[2] K[3] Fmax[4]

The header of the associated class is

// nl_inout non linearity 1003

class chandleNl_inout: public chandle {
public:

int *irc, *jcc,*irb, *jcb,*iopt;

double *prc,*pic,*prb,*pib,*unl,*vnl,*snl,*opt;

int N[11]; // Nunl, (c,1),(c,2),cTrans, (b,2),(b,1),bTrans, Nopt[7],Niopt[8],size(unl,3)[9]

__Fu Fu;// (*Fu)(chandleNl_inout*,struct _ROr);

mxArray* MexData[2];

chandleNl_inout();

~chandleNl_inout();

void Residual(struct _ROr ROr, double* fc);

void initCpt(); // Initialize pointers

void EndStep(); // propagate internal states using StoreType strategy

};

chandle

// Residual structure --

struct _ROr {
int Nk,Nnl;

double RayleighM,RayleighK,tc;

double *u,*v,*a,*FNL;

};
// Default function handle

typedef void(*__Fu)(chandle* ph, struct _ROr ROr);

140

Non linearities list

Purpose
List of supported non linearities. It is possible to create new ones (sdtweb nl fun)

nl inout

nl inout is the more general non linearity, using observation and command matrix associated with
elements supporting the kinematics (cbush for point connections, see section 1.2.1 , zero thickness
volumes for surface connections (where two layers of coincident nodes are considered for a hexa8 or
penta6 element, see section 1.2.2), volume elements for 3D applications (see section 1.2.3) or the
deprecated observation/sensor command/loads as detailed in section 1.2.5 .
The general form of the non-linearity fNL = b× f(C.u,C.v) is detailed in section 1.1 .
For a list of implemented non-linear constitutive laws xxx
The pro.NLdata structure has fields described in section 1.6.1 (with the need to distinguish the
form for model declaration and during time integration).
By default, no Jacobian is computed for this non-linearity. Experimental Jacobian are computed
according 3 methods according to the NL.Jacobian value:

� 0 : no Jacobian. (default).

� 1 : tangent matrices.

� 2 : fixed Jacobian (can be max stiffness / damping or mean, ...).

Then computed matrices are then multiplied by NL.alphaJK factor for Jacobian stiffness, and
NL.alphaJD factor for Jacobian damping.

nl contact

Supports non conform fixed matching contact (squeal applications for example) and (surface contact
large displacement, as in rail/wheel interaction for example). For conform meshes, zero thickness
elements associated with p zt can be used.
See p contact, ctc utils.

nl modaldmp

Implementation of modal damping. Although modal damping is not a non-linear feature in itself,
its implementation requires it to be declared as a non-linearity.
The concept is to provide shapes defined on a part of a model with associated damping ratios.
nl modaldmp handles the kinematic projection on the model which can contain superelements. In
the case where superelements are used and concerned with modal damping, the shapes provided
must be written on the physical DOF of the superelements.

Non linearities list

The set of shapes must be stacked in model with a valid ID field. It is a common deformation SDT
data structure (see sdtweb def), with an additional .ID field. The .data field is equivalent to the
ones of complex modes (see fe ceig). It is a matrix of two columns respectively giving the frequency
and the target damping ratio for each mode.
Since modal damping implies a modal sensor, the features performs both by default. It is however
possible to simplify it as a pure modal sensor. The theory around modal sensing/damping can be
found in

ver09
[29].

The pro.NLdata structure has fields

� type: string ’nl modaldmp’.

� CurveId: the curve ID stacked in model which provides the shapes and their damping ratios.

� SensorOnly: to use the feature only as a modal sensor in a def data structure.

The NLdata structure generation can be integrated using an nl modaldmp(’db’) call. See sdtweb

nl spring#setpro for this integration. This is used in transient simulations, and in complex mode
computations, see nl solve.

142

nl inout

Purpose
The generic form of NLdata specification is discussed in section 1.6 .

DofSet

Implementation of linear or large rotation setting of DOF values from time curves of a fe case

DofSet entry. sdtweb(’ eval;’,’d fetime.m#NLNewmark LrDofSet’).
Supported variants are

� large rotation trajectories (using MBBryan) uses .unl(:,:,1) corresponding to large displace-
ment and updates .unl(:,:,j1) when changing time step to allow velocity computations
(currently only valid for fixed time step). Requires setting .KeepDof=1 and enforcing 6 DOF
associated with the master node.

� translation trajectories (xxx).

Power

uses NLdata.opt=[comstr(’Power’,-32) k n] and snl = k unnl.

FuTable

uses tabular definitions in either NLdata.Fu or NLdata.Fv. If you want a case with both simul-
taneously to be re-implemented please provide a test case. Implements a Jacobian using tangent
stiffness. Run example with sdtweb(’ eval;’,’d fetime.m#ModalNew FuTable’).

K t

Implement time varying matrices and DofSet xxx.

MexIOa

Implements callback to user defined .m file implementations of non-linearities as detailed in sec-
tion 1.3.5 .

SCLd

Large displacement surface contact supported as part of the contact module (see sdtweb(xxx)).
Possible application : rail/wheel contact. This supports low pass filtering of contact forces, using an
evolution equation of the form Ḟc/ωc + Fc = kcg (for a positive constant) or Ḟc/ωc + Fc = kc

√
(g)

for a negative constant. This avoids incorrect bouncing of stiff contacts in implicit computations

nl inout

and ωc should be a fraction of the sampling frequency (inverse of time step) or the maximum mesh
frequency.

LRFu

Large rotation tabular spring for multi-body applications. cbush kinematics are expected and ro-
tations are assumed using Bryan angles in radians. Requires one non-linearity for each spring (not
currently vectorized). The NL.Node field gives slave and master node for each body (4 nodes). The
observed motion is given at the master node and large rotation is used to determine the current
position of the slave node. With single axis springs (large rotation rod) the position of the two slave
nodes should be disjoint.
The stress vector used by this non-linearity contains 24 elements

� sx1,sy1,sz1,srx1,sry1,srz1 forces and moments on node 1

� sx,sy,sz,srx,sry,srz forces and moments on node 2

� PX1,PY1,PZ1,rx,ry,rz absolute position of node 1 and rotations

� ux,uy,uz relative displacements in x,y,z directions, sex,sey,sez force in element frame.

slab sensor non-linearity

This non-linearity supports observation of various quantities during FEM computations. The base
definition is associated with the sdtweb(’sensor# scell’)

� For direct resultant sensors in time integration schemes using enforced displacement -fieldOut4,
leading to NL.iopt(6+isens)==4. See more details in xxx

Needs documentation, see sdtweb d fetime(’slab’).

NL=struct(’type’,’nl_inout’,’slab’,{li(:)},’UserObs’,dyn_solve(’@doObs’));
mt=stack_set(mt,’pro’,’Sensors’,struct(’il’,1e5-1,’type’,’p_null’, ...

’NLdata’,NL));

Note that in predictor/corrector schemes, it may be necessary to recompute the residual to obtain
the correct residual.

temp still undocumented

� FuExpon snl = a bunl .

� uMaxw generic C implementation of nl maxwell.m file

144

nl inout

� FuDahlC Dahl model with constant force

� STS PSA scalar STS

� CLIMA2 connector non-linearity developed with Marco Rosatello

� FuFric basic friction model with Fk = Ku bounded by ±Fmax.

� nl bset xxx

� DofSet xxx

145

Non linearities list (deprecated)

Purpose

nl maxwell (deprecated)

nl maxwell describes rheological models using stiffness and damping. Deprecated implementation
that should now be called with an nl inout.
.type ’nl maxwell’

.lab Label of the non linearity.

.Sens Observation definition. Cell array of the form {SensType,SensData} where SensType
is a string defining the sensor type and SensData a matrix with the sensor data (see
sdtweb sensor).

.Load data structure defining the command as a load (with .DOF and .def fields).

.SE superelement that defines the rheological model. Only matrices are used (.K field).
Mass matrix is ignored. The .DOF field is unused and first DOF are assumed to be
the observations defined, and following correspond to internal states.

.NLsteps Number of sub steps for the integration.

.StoreFNL strategy to store FNL output, should be initialized from StoreType.
Ncell number of cells.
Jacobian is computed using a Guyan condensation keeping only the observation (internal states are
condensed) to obtain tangent damping and stiffness.
Internal states are integrated using an independent finite differences explicit scheme, with the same
step of time as the main scheme, or a subsampling NL.NLsteps times.
At the first residue computation, the initial internal states are computed according to initial con-
dition in terms of displacements and velocities through a time integration until variation of speed
between the 2 last computed steps is lower than opt.RelTol.
Force on the observation DOF (F), displacement (Qc) and velocity (dQc) of the internal DOF, dis-
placement and velocity observations are stored in the NL output.

The command nl spring db Fu"type" is a database of generalized Maxwell rheological models.
type can be:

� zener standard viscoelastic model. Parameter k0, k1 and c1 can be given as a string of the
form db Fu"zener k0 k0 k1 k1 c1 c1" in the command.

The example of the standard viscoelastic model is detailed here as an illustration. The standard
viscoelastic model, also known as Zener model, is composed by a spring (K0) in parallel with another
spring (K1) and a serial dashpot (C1) as displayed figure 4.5.

Non linearities list (deprecated)

Figure 4.5: Standard viscoelastic model. f:zenermdl

In the Laplace domain, the relation between the relative load and the relative displacement is given
by

F (s) = K(s)X(s) =
K0K1 + (K0 +K1))C1s

K1 + C1s
= K0

1 + s/z

1 + s/p
(4.2) eq*nl_maxwell_1

where p and z are respectively the pole and the zero of the model

p =
K1

C1
(4.3) eq*nl_maxwell_2

z =
K0K1

(K0 +K1)C1
(4.4) eq*nl_maxwell_3

The maximum loss factor is

ηm =
p− z

2
√
pz

=
1

2

K1√
K0 (K0 +K1)

(4.5) eq*nl_maxwell_4

and obtained for pulsation

ωm =
√
pz =

K1

C1

√
K0

K0 +K1
(4.6) eq*nl_maxwell_5

K0 is the static stiffness of the model. Typically K1 =
K0
2 and C1 is defined so that the damping is

maximal for the frequency of interest.
Following example considers K0 = 1000N/m, K1 = 500N/m and C1 = 1.4Ns/m. These parameters
lead to a maximum loss factor of 20.14% for a frequency of 46.41Hz. The module and the loss factor
are represented in figure 4.6.

147

Non linearities list (deprecated)

Figure 4.6: Module and loss factor. f:zenerexgeta

Following example consists in a mass of 1e-2kg linked to the ground by the Zener model. Initial
displacement corresponding to a 1N load on the mass is imposed and then a time simulation is
performed.

% parameters

param.m=1e-2; param.dt=1e-4; param.N=1e3;

param.k0=1e3; param.k1=param.k0/2; param.c1=1.4; % zener parameters

% define model

model=struct(’Node’,[1 0 0 0 0 0 0],...

’Elt’,[Inf abs(’mass1’) 0; 1 0 0 param.m 0 0 0]);

% define nl_maxwell data

data=nl_maxwell(sprintf(’db Fu"zener k0 %.15g k1 %.15g c1 %.15g"’,....

param.k0,param.k1,param.c1));

data.Sens{2}=1.03; % translation sensor defining nl_maxwell inputs

% define associated property

r1=p_spring(’default’); r1=feutil(’rmfield’,r1,’name’);

148

Non linearities list (deprecated)

r1.NLdata=data; r1.il(3)=param.k0;

r1.il(1)=100; model=stack_set(model,’pro’,’zener’,r1);

% define option for time integration

opt=d_fetime(’TimeOpt’);

opt.NeedUVA=[1 1 1];

opt.Follow=1; opt.RelTol=-1e-5;

opt.Opt(7)=-1; % factor type sparse

opt.Opt(4)=param.dt; opt.Opt(5)=param.N; % NSteps

%opt.IterEnd=’eval(opt.Residual)’; % to compute real FNL for current state

% Initial state

r1=data.SE.K{3}\[1;0]; r1=r1(1); % initial displacement for 1N load

model=stack_set(model,’curve’,’q0’,struct(’def’,r1,’DOF’,1.03));

% Time computation

def0=fe_time(opt,model); ci=iiplot; % compute

% The same but NL as a model

SE2=data.SE;

SE2.Elt(end+1:end+2,1:6)=[Inf abs(’mass1’); 1 0 0 param.m 0 0];

SE2=fe_caseg(’assemble -secdof -matdes 2 3 1 -reset’,SE2);

r1=SE2.K{3}\[1;0]; %r1=r1(1);

SE2=stack_set(SE2,’curve’,’q0’,struct(’def’,r1,’DOF’,SE2.DOF));

def20=fe_time(opt,SE2); % compute

F20=SE2.K{2}*def20.v+SE2.K{3}*def20.def; F20=F20(1,:);

% zener labs: {’zener-F1’,’zener-q1’,’zener-q1-1’,’zener-dq1’,’zener-dq1-1’}
NL20=struct(’X’,{{def20.data {’LIN-F1’;’LIN-Qc1’;’LIN-dQc1’;’LIN-unl1’;’LIN-vnl1’;’ft’}}},...
’Xlab’,{fe_curve(’datatypecell’,’time’)},...
’Y’,[F20’ (fe_c(def20.DOF,1.03)*def20.def)’...

(fe_c(def20.DOF,3.03)*def20.def)’...

(fe_c(def20.DOF,1.03)*def20.v)’...

(fe_c(def20.DOF,3.03)*def20.v)’ zeros(size(def20.def,2),1)]);

NL20.name=’NLfromLIN’;

iicom(’curveinit’,{’curve’,’NL(1)’,ci.Stack{’NL(1)’};
’curve’,NL20.name,NL20});

A=ci.Stack{’NL(1)’}.Y(2:end,:);B=NL20.Y(2:end,:);t=NL20.X{1}(2:end);i2=any(A);
if norm(A(:,i2)-B(:,i2),’inf’)/norm(B,’inf’)>0.01

figure(1);plot(t,A,’--o’,t,B,’-’)

sdtw(’_err’,’something has changed’)

end

149

Non linearities list (deprecated)

DofKuva

DofKuva defines a non linear load of the form
aveDof [K] {V } with a scalar coefficient a, a scalar vDof extracted from displacement, velocity or
acceleration, and V a field specified as follows
.type ’DofKuva’

.lab Label of the non linearity.

.Dof Dof of Case.DOF.

.Dofuva [1 0 0] for displacement Dof, [0 1 0] for velocity and [0 0 1] for acceleration.

.MatTyp Type of the matrix K (see MatType). Desired matrix is automatically assembled
before time computation.

.factor Scalar factor a.

.exponent Exponent of the DOF.

.uva Type of vector V : [1 0 0] for displacement, [0 1 0] for velocity and [0 0 1] for
acceleration.

For example one can take in account gyroscopic effect in a time computation with a NL of the form

model=stack_set(model,’pro’,’DofKuva1005’, ... % gyroscopic effects

struct(’il’,[1005 fe_mat(’p_spring’,’SI’,1) 0 0 0 0 0],...

’type’,’p_spring’,’NLdata’,struct(...

’type’,’DofKuva’,’lab’,’gyroscopic effect’, ...

’Dof’,1.06,’Dofuva’,[0 1 0],’MatTyp’,7,...

’factor’,-1,’exponent’,1,’uva’,[0 1 0])));

DofV

DofV defines a non linear effort of the following form (product of a fixed vector and a dof)
(u)exponent.V NDdata fields for this non-linearity are
.type ’DofV’

.lab Label of the non linearity.

.Dof Dof of Case.DOF.

.Dofuva [1 0 0] for displacement Dof, [0 1 0] for velocity and [0 0 1] for acceleration.

.exponent Exponent of the DOF.

.def data structure with fields .def which defines vector V and .DOF which defines corre-
sponding DOF.

nl spring

nl spring defines a non linear load from rheological information (stop, tabulated damping or stiffness
laws etc.) between 2 DOF.
To define a non linear spring, one has to add a classic celas element, linear spring between only

150

Non linearities list (deprecated)

2 DOF. The non linear aspect is described by associated properties as a ’pro’ entry in the model
Stack.
One can describe non linearity by a formal rheological description using one or more of following
fields in the pro Stack entry:

� .But : [dumax k0 c0 dumin k1 c1] bumpstop. For du from dumin to dumax, f=0. For
du>dumax, k0 stiffness is applied to du-dumax, and for du<dumin, k1 stiffness is applied to
du-dumin. Damping is not taken in account at this time (due to tabulated law strategy).

� .Fsec : [fsec,cpenal]. For dv<-fsec/cpenal or for dv>fsec/cpenal, f=fsec is applied.
For -fsec/cpenal<dv<fsec/cpenal, f=cpenal*dv is applied. If omitted, cpenal=1e5.

� .K

� .C

This information will be converted in tabulated laws Fu and Fv using nl spring tab (low level call
that should be automatically called at the beginning of time computation).
One can also describe non linearity with a tabulated effort / relative displacement and effort / relative
velocity law between the DOF (dof2-dof1), respectively in the Fu and Fv fields of the pro Stack entry.
First column of Fu (resp. Fv) gives the relative displacements (resp. velocities) and second column
gives the efforts. One can give a coefficient av factor of Fv depending on relative displacement as a
third column of Fu. It can be useful to describe a non linearity depending on relative displacement
and relative velocity. Force applied is F=av(du).Fv(dv). It is used in particular to describe damping
in a stop (.But NL).
Following example performs a non linear time computation on a simple 2-node model:

RT=struct(’nmap’, vhandle.nmap);

% sdtweb d_fetime Mesh2DOF % For meshing scrip

% sdtweb d_fetime LegacyBumpStop % For NLdata definition

li={’MeshCfg{d_fetime(2DOF),LegacyBumpStop{Z0}}’
’SimuCfg{Imp{1m,10,uva110}}’; % implicit NLNewmark simulation

’RunCfg{Time}’};disp(comstr(li(1:2:end)’,-30))
RT.nmap(’CurExp’)=li; sdtm.range(RT);

model=RT.nmap(’CurModel’);def=RT.nmap(’CurTime’);

li{3}=’SimuCfg{Exp{1m,10,uva110}}’; RT.nmap(’CurExp’)=li;% Same using explicit

sdtm.range(RT);mo2=RT.nmap(’CurModel’);d2=RT.nmap(’CurTime’);

figure(10);clf;% plot some comparison between results

subplot(211);plot(def.data,[def.def’ d2.def’]);xlabel(’Time [s]’);ylabel(’displacement’)

151

Non linearities list (deprecated)

subplot(212);plot(def.data,[def.v’ d2.v’]);xlabel(’Time [s]’);ylabel(’velocity’)

legend(’Implicit’,’Explicit’);setlines;

sdth.os(10,’@OsDic’,{’ImGrid’,’ImSw80’,’ImTight’})

Following example deals with a clamped-free beam, with a bilateral bump stop at the free end.

% define model:

L=1; b=1e-2; h=2e-2; e=1e-3; % dimensions

model=[];

model.Node=[1 0 0 0 0 0 0; 2 0 0 0 L 0 0];

model.Elt=[Inf abs(’celas’) 0 0;

2 0 2 0 100 1 110 0; % linear celas

Inf abs(’beam1’) 0 0;

1 2 1 1 0 1 0 0

];

model=feutil(sprintf(’RefineBeam %.15g’,L/20),model);

model=fe_case(model,’FixDof’,’base’,1); % clamps 1st end

model=fe_case(model,’FixDof’,’2D’,[0.03;0.04;0.05]); % 2D motion

% model properties:

model.pl=m_elastic(’dbval 1 steel’);

model.il=p_beam(sprintf(’dbval 1 BOX %.15g %.15g %.15g %.15g’,b,h,e,e));

% Bump stop NL:

model=stack_set(model,’pro’,’celas1’,...

struct(’il’,[100 fe_mat(’p_spring’,’SI’,1) 1e-9 0 0 0 0],...

’type’,’p_spring’,...

’NLdata’,struct(’type’,’nl_inout’,...

’but’,[0.02 5e2 0 -0.02 5e2 0],... % gap knl cnl...

’umin’,3)));

if 1==1

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.02,’def’,50));

model=fe_curve(model,’set’,’input’,’TestStep t1=0.02’);

else

f=linspace(12,18,3);

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.02,’def’,1));

model=fe_curve(model,’set’,’input’,sprintf(’Testeval cos(%.15g*t)’,f(1)*2*pi));

end

model=fe_case(model,’setcurve’,’in’,’input’);

% Time computation:

opt=d_fetime(’TimeOpt dt=1e-3 tend=10’); opt.NeedUVA=[1 1 0];

def=fe_time(opt,model);

152

Non linearities list (deprecated)

RotCenter

The Rotcenter joint is used to introduce a penalized translation link between two nodes A and
B (rotation DOFs of NL entry are ignored), where the motion of A is defined in a rotating frame
associated with angle θA and large angle rotation RLG(θA). The indices G and L are used to indicate
vectors in global and local coordinates respectively.
The positions of nodes are given by

{xA}G = [RGL] ({pA}+ {uA}L)
{xB}G = ({pB}+ {uB}G)

(4.7) eq*RotCenter_1

which leads to expressions of the loads as

{FA}L = [RLG] (K ({xB}G − {xA}G))
{FB}G = K ({xA}G − {xB}G)

(4.8) eq*RotCenter_2

To account for viscous damping loads in the joints, one must also compute velocities. Using (??),
one obtains

{ẋA}G = [RGL] ({u̇A}L + {ω(t)} ∧ {pA + uA}L)
{ẋB}G = {u̇B}G

(4.9) eq*RotCenter_3

Velocity computations are currently incorrect with uA ignored in the rotation effect. So that viscous
damping loads can be added

{FCA}L = [RLG] (K ({ẋB}G − {ẋA}G))
{FCB}G = K ({ẋA}G − {ẋB}G)

(4.10) eq*RotCenter_4

For a linearization around a given state (needed for frequency domain computations or building a
sensor observation matrix), {

qAG
qBG

}
=

[
RGL 0
0 I

]{
qAL
qBG

}
(4.11) eq*RotCenter_5

In global basis, stiffness matrix of a celas link is given by

k

[
I −I
−I I

]
(4.12) eq*RotCenter_6

which leads to the following stiffness matrix[
RTGL 0
0 I

]
k

[
I −I
−I I

] [
RGL 0
0 I

]
= k

[
I −RTGL

−RGL I

]
(4.13) eq*RotCenter_7

where qA DOFs are in the local basis (motion relative to the shaft in its initial position) and qB are
in the global frame.

153

Non linearities list (deprecated)

data describing this link is stored in model stack as a p spring pro entry. Stiffness and damping
are stored respectively as 3rd and 5th column of the data.il field (standard linear spring, see
sdtweb(’p spring’)).
NDdata fields:

� .type string ’RotCenter’.

� .sel a FindElt command to find celas of RotCenter type.

� .k this field should not be used. .JCoef field should be used instead and has priority. Stiffness
used for Jacobian computation. Damping is not taken in account in Jacobian in this case.

� .JCoef coefficient of celas stiffness and damping for Jacobian computation. Default is 1.

� .drot the rotation DOF.

� .lab label.

nl rotCenter

This non linearity can be used to connect 2 points A and B, where the motion of A is defined in a
rotating frame associated with angle θA and large angle rotation RLG(θA). More generally A and B
are no real nodes but defined implicitly as observation matrices. nl rotcenter is an extension of
RotCenter documented above, using observation matrices which is more general.

� .type string ’nl rotcenter’.

� .sel a FindElt command to find elements associated to the NL link

� .JCoef coefficient of celas stiffness and damping for Jacobian computation. Default is 1.

� .drot the rotation DOF.

� .lab label.

� .Weights (optional) Weight of the stiffness in a pivot link (in fact computed force is multiplied
by the weight factors before being applied so that the sum of weight coef divided by number
of points by pivot should be equal to 1).

� .Stack Stack of cta coupling. Of the form {’cta’, ’name’,{r1,r2}}, where ’cta’ is a con-
stant string defining the type of the link, ’name’ a string containing the name of corresponding
links. r1 is the observation in the first (rotating) part. It is a data structure with fields .Node
defining the nodes involved, .cta defining the observation matrix, .DOF defining correspond-
ing DOF (as many columns as in .cta) and .SeName defining as a string the name of the
superelement where cta is defined (if omitted, it is assumed that DOF and cta are defined on
the model.DOF - no superelement -). r2 is the same for the non rotating part.

154

Non linearities list (deprecated)

An example can be found in t nlspring 2beam.
Default uses the damping and stiffness defined in the il field of the p spring pro entry to model a
linear spring/damper between the 2 parts (stiffness il(3) and damping il(5)).

Defining a xb parameter, the Excite NONL law will be applied instead of the spring/damper. Pa-
rameter that are to be defined are

� .xb Radial clearance.

� .kb Stiffness at radial clearance.

� .cb Damping at radial clearance.

Stiffness and damping at initial position are given in corresponding p spring properties il(3) and
il(5). For example:
cf.mdl=nl spring(’setpro ProId 103 k 371 c 2000e-3 xb 0.03 kb 37100 cb 5’,cf.mdl);

rod1

The rod1 non-linear connection is a simple penalized rigid link. One considers two nodes A and B
(see figure 4.7).

Figure 4.7: Large rotation rod functional representation. f:rod1fig

Currently, one can introduce masses at points A and B. mass2 elements should be used to account
for the actual position of the center of gravity.
The global non linear load associated with the rod is thus

Frod = kr (∥{xB − xA}∥ − L0)
{xB−xA}

∥{xB−xA}∥ (4.14) eq*nl_spring_rod1_1

which accounts for a load proportional to the length fluctuation around L0 (penalized rod model).

155

Non linearities list (deprecated)

When linearizing, one considers a strain energy given by kr∥qB − qA′∥2 with the motion at node A′

being related to the 6 DOFs at node A by

{qA′} =

[
I
[
A⃗B∧

]
0 I

]
{qA} (4.15) eq*nl_spring_rod1_2

Node A node is free to rotate. The linearized stiffness thus corresponds to an axial stiffness in the
direction of the rod. The computation of the stiffness is however based on the current position of
the extremity nodes, a difficulty in model manipulations is thus to translate these nodes.
data describing this link is stored in model stack as a p spring pro entry. Stiffness and damping
are stored respectively as 3rd and 5th column of the data.il field (standard linear spring, see
sdtweb(’p spring’)). NL information is stored in the data.NLdata field which has itself following
fields :

� type : string ’rod1’.

� sel : a FindElt command to find associated celas of rod1 type ((’proid100’).

� ulim : build tabulated law from -ulim to ulim. Default is 1e3.

� lab : label.

nl gapcyl

XIR, XOR

Reference

XI

XO

Updated Lagrangian (mesh)

xO

Current

uo

ui

eθ

e
r

This non-linearity implements non-linear contact between two cylinders of radius RO for the outer
cylinder and RI for the inner cylinder with motion defined on the cylinder center line. Assuming
the mesh to be defined in an updated Lagrangian configuration where the center lines XI and XO

at not coincident, the positions in a deformed states are given by xI = XI + uI and xO = XO + uO.
Contact may only occur when the cylinders are not centered. When the two cylinders are not
centered the non-linear observation is given by

156

Non linearities list (deprecated)

uNL = xO − xI = uO − uI + (XO −XI) = [c] {q}+ uNL0 (4.16) eq*nl_spring_nl_gapcyl_1

From this distance between the center lines, a cylindrical basis is defined with er(q) along the
direction from xI to xO and eθ forming a direct basis with the cylinder axis (kept constant from the
initial value of the updated lagrangian position).
The functional definition of the contact force uses the gap in the er direction defined by

g = {er}T {uNL} − (RO −RI) (4.17) eq*nl_spring_nl_gapcyl_2

where RO − RI = d is stored as parameter NLdata.d and the contact leads to two opposite forces
on the cylinder center lines

{fI} = {−fO} = f(g) {er} (4.18) eq*nl_spring_nl_gapcyl_3

The current implementation assumes rotations to be small enough to ignore the difference between
er and the corresponding vector Er in the upated Lagrangian configuration.
If update of mesh leads to lateral slip, then uI may account for longitudinal position of the contact
point along the beam using shapes functions.
When linearizing the contact around a given point, the stiffness ∂f∂g only occurs in the er direction.

157

Creating a new non linearity: nl fun.m

Purpose
The structure of nl spring allows creating any new non-linearity through the use of a dedicated
function, named nl fun.m. This function which non-linearity name will be fun, will be automatically
called by nl spring for classical operations.
The function structure has been designed to comply with specific needs. Standard calls have been
defined, which are detailed below:

� Residue computation, called by mkl utils (sdtweb mkl utils), must output the entry
force minus the non linear force computed. The call performed is

nl_fun(r2,fc,model,u,v,a,opt,Case)

This call is low level and must modify fc using sp util(’setinput’) as fc-fnl where fnl

is the non linear force computed. Note that this is the only possible call for nargin==8. Note
that mkl utils allows a formalism with precomputed observations, using fields unl.

� Jacobian computation, must output the tangent stiffness and tangent damping matrices
associated to the non linearity. The call performed is

[kj2,cj2]=nl_fun(NL,[],model,u,v,[],opt,Case,RunOpt);

This call must output either empty matrices if no tangent nor Jacobian matrix is associated
to the non linearity, or matrices expressed on the DOF vector of Case.DOF. The first matrix
is the tangent stiffness matrix, the second one is the tangent damping matrix. Typically there
are 3 normalized methods to be defined (but not all of them must be defined, and more can
be defined) according to the NL.Jacobian value:

– 0 : no Jacobian. (default).

– 1 : tangent matrices.

– 2 : fixed Jacobian (can be max stiffness / damping or mean, ...).

Then computed matrices are then multiplied by NL.alphaJK factor for Jacobian stiffness, and
NL.alphaJD factor for Jacobian damping.

� Initializations for fe time, must initialize the model non-linearity for non linear forces com-
putation

The call must generate the non linearity stored in model.NL, it can optionally generate non
linear DOF and labels. The call performed is of the type.

NL=nl_fun(’init’,data,mo1);

Creating a new non linearity: nl fun.m

NL is a struct containing at least the field type with the nl fun handle (e.g. NL.type=@nl fun).
data contains the Stack,pro entry, and mo1 is the model, named mo1 where the call is performed.

� ParamEdit returns the ParamEdit string allowing integrated parameters interpretation (for
internal SDT use).

The call performed is of the type.

st=nl_fun(’ParamEdit’);

� db returns default NLdata fields for a non linearity. This allows integrated building of non-
linearities in a model. This function can call ParamEdit to allow interactive setup.

This call must return a NLdata field and is of the type

NLdata=nl_fun(’db data 0’);

� Energy post treatments capability, should return the elastic energy stored in the non-
linearity as a vector with as many lines as time steps in the output.

The call performed by nl solvePost is of the form

r2 = nl_fun(’PostEnerNL’);

The non linearity function can access in caller fields RO, out, model, NL, i1 with

– RO a structure with fields EnerP and EnerK respectively containing the potential and
kinetic energy.

– out the fe timeoutput.

– model the model used in the simulation.

– NL the NL containing the data of the non-linearity called.

– i1 the row index of out.Post that is currently generated.

� Renumbering capability, must return the non-linearity written for the new renumbered
nodes, elements, dof, . . .

The call performed (by feutilbfor example) is of the type

NL=nl_fun(’renumber’,NL,nind);

nind is the renumbering vector.

The designed nl fun template is given in the non-linear toolbox, sdtweb nl fun.m#1. It is a func-
tional non linear function, computing a zero non linear force. The definition of a non linearity using
nl fun in a standard SDT model is given in the following.

159

Creating a new non linearity: nl fun.m

% A standard SDT model

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 1],...

’Elt’,[Inf abs(’celas’) 0 0;

1 2 3 -3 0 1 0 10; % linear celas

]);

% Define a non linearity of type nl_fun

model=nl_spring(’SetPro ProId 100’,model,nl_fun(’db data0’));

%Equivalent to

% model=stack_set(model,’pro’,’nl_fun’,...

% struct(’il’,[100 fe_mat(’p_spring’,’SI’,1)],...

% ’type’,’p_spring’,...

% ’NLdata’,struct(’type’,’nl_fun’,’data’,[])));

% Define the case

model=fe_case(model,’FixDof’,’base’,1);

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.03,’def’,1));

model=fe_curve(model,’set’,’input’,’TestStep t1=0.02’);

model=fe_case(model,’setcurve’,’in’,’input’);

% Define the TimeOpt and compute the solution

opt=nl_solve(’TimeOpt’); opt.Opt([4 5])=[1e-3 1e4];opt.NeedUVA=[1 1 0];

def=fe_time(opt,model);

160

nl solve

Purpose
Integrated non linear simulations

Description
The simulation of non linearities require special handling in SDT, which is packaged in the non linear
toolbox. This function aims at performing classical studies, such as done by fe simulfor classical
SDT models with this special handling.
See nllist for the list of supported non linearities.

TimeOpt

nl solve(’TimeOptMethod’,RO) used to initialize fe time options for later simulation. Currently
implemented methods

� Explicit Newmark scheme

� Stat non-linear static Newton

� Theta method time integration.

� ModalNewmark uses an optimized fully C based integration for the case where DOF correspond
to modal degree of freedom. The stepped sine strategy is discussed in section 2.3.2 .

� NLNewmark default implicit Newmark scheme.

Associated options provided in RO or in the command are

� .tend end time of simulation. Used to initialize .ts=ceil(tend/dt).

Static

To compute the static state of a model with non-linearities.

q0=nl_solve(’static’,model);

It is possible to use custom fe time simulation properties using the model stack entry info,TimeOptStat.
See nl spring TimeOpt for fields and defaults.
It is possible to use as command option any field from the usual static simulation option, see sdtweb
nl spring#TimeOpt to have more details. E.g. To redefine on the fly the maximum number of
iteration, one can enter [q0,opt]=nl solve(’static maxiter 100’,model);.
By default, the staticNewton algorithm implemented in fe time is called.
An Uzawa algorithm is also implemented in nl solve, under the method static nl solve uzawa.
This algorithm is very different from the staticNewton one since here the solution is not incremented

nl solve

but fully re-computed at each iteration. This is useful when some non-linear forces do not derive from
potentials. Command StaticUzawa can be used in nl solve – to access it: q0=nl solve(’static

Uzawa’,model);.

Mode

The definition of modes for non-linear models is not straight forward. This command aims at
computing tangent modes as function of a non-linear model current state. The resolution thus
concerns a linear model with tangent stiffness, damping matrices corresponding to the model current
displacement, velocity, acceleration state. The eigenvalue solvers used are then fe eigfor real modes
and fe ceigfor complex modes.
By default, modes tangent to a static state are computed. A static simulation is performed to
produce a model state from which tangent matrices are computed. It is also possible to compute
tangent modes at specific instants during a transient simulation, at SaveTimes instant, and to store
frequency/damping data and deformations.
A set of command options allows detailing the mode computation wanted and the output.
Accepted command options to control the model computation itself are

� -allmatdes to ask for an assembly with all matrix types assembled, the default assembly
command used is -matdes 2 3 1. This command can be used to keep specific matrix types
defined in pre-assembled superelements.

� cpx for complex mode computation (default is real mode computation).

� -evalFNL (in combination with command traj) asks to recompute the FNL field on the fly
based on displacements prior to mode computation. This command is useful when solutions
used for the tangent state have been imported from an external solver.

� skip skips fe timesimulations and performs the complex mode computation based on the zero
deformation and with initialized values of non linearities. The behavior will thus depend on
the non linearity initialization strategy. E.g. for contact see (p contact), the -skip option
will consider a full contact state.

� stat for mode computation based on a static state (typically after a fe time staticNewton

simulation). Uses model stack entry info,TimeOptStat.

� time for mode computations during a transient simulation (exclusive with the default -stat
option). Uses model stack entry info,TimeOpt.

� traj for mode computations based on states provided as an additional argument.

The -stat and -time options are mutually exclusive and define the base solver options to be used by
fe timefor the preliminary state computation. With -stat option (default) the stack entry info,

162

nl solve

TimeOptStat will be sought and used if found. With -time option, the stack entry info,TimeOpt

will be used if found.
The -traj option is complementary and is used to force the complex mode computation on provided
states. On can either provide the state in deformation curve format, see sdtweb def as a last
argument, or use predefined stack entries. In -stat mode (default), the model stack entry curve,q0

will be sought and used if found, if not the result will use the -skip mode. In -time mode, the
model stack entry curve,TSIM will be sought and used. If not found an error will occur.
Accepted command options to control the output format are

� -addedOnly (in combination with backTgtMdl) only outputs the tangent matrices as a su-
perelement that would have been added to the base matrices for the mode computation.

� -alpha (requires -cpx) to also output the real mode participation to the complex modes. This
is in fact the projection of the complex modes on the real mode basis.

� -backTgtMdl outputs the tangent model that would have been used for mode computation.

� -dataOnly to save only the frequency, damping data (does not store the deformation field).
The output is then under a frequency tracking curve in the iiplotformat.

� -fullDOF to output the deformation fields restituted on the unconstrained DOF.

� -keepTval (requires -cpx) to allow keeping the underlying real mode basis when computing
complex modes. With val set to 1, the initial real mode basis will be kept under field def.T,
as an additional independent output, coherent with the -alpha command option. With val

set to 2, the complex modes will not be restituted but expressed on the subspace used for
their computation, the subspace basis will be output in def.Mode.TR, allowing a complete
compatibility with feploton-the-fly restitution strategy for display. This latter option is the
most complete and efficient strategy. Complete subspace information is kept and can be used
for further exploitation, complex mode projection on real mode (-alpha) is naturally obtained,
and memory footprint is optimized as the storage size of the subspace is commonly lower by a
factor 1.5 to 2 than the complex mode basis;

� -noPost is used to skip any solution post treatment, and outputs the raw mode structure
straight from the solver.

� -PostFcn’’cam’’ is used to perform specific post-treatments on the mode output after com-
putation.

� -real "ModeBas" (requires -cpx) to specify a particular real mode basis on which the complex
modes will be computed. The real mode basis is supposed to be stored in the model stack
entry curve, ModeBas.

163

nl solve

Internally, the solver defines and uses the model stack entry info,SolveOpt structure to handle
the options documented above. One can define it as a structure with the fields documented (case
sensitive) and provide it instead of the EigOpt input. Additional advanced field are then accessible

� EigOpt a vector providing eigenvalue computation options following the fe eigformat.

� cpx’’command’’ to externalize the mode computation. This command is by default a Boolean
telling the solver whether to perform a complex mode computation (set to 1) or a real mode
computation (set to 0). If a string is provided, the solver will evaluate it as an external
command instead of performing mode computation. One then gets access to the nl solve

mode computation framework for ones’ own solver.

� ind provides a vector of indices that will be used to restrict the output to the indexed modes.

� SubDef provides a command that will be evaluated to perform a dynamic user defined re-
striction to the output modes, it is thus more general than the ind option. The result of the
command has to be a vector of indices.

� AssembleCall to force a specific AssembleCall strategy.

The various input and output strategies allow for the support of several input syntax. The following
calls are thus accepted, with model a standard SDT model, Case a standard SDT case structure,
eigopt either a vector providing options for fe eigor a structure with optional fields defined above,
def a standard SDT deformation field structure used by -traj when necessary.

nl_solve(’mode’,model);

nl_solve(’mode’,model,eigopt);

nl_solve(’mode’,model,Case,eigopt);

nl_solve(’mode’,model,def);

nl_solve(’mode’,model,Case,def);

nl_solve(’mode’,model,eigopt,def);

nl_solve(’mode’,model,Case,eigopt,def);

Sample calls using command options to extract tangent modes are given below.

def0=nl_solve(’Mode’,model)

def0=nl_solve(’Mode’,model,[5 20 1e3]) % with eigopt

def0=nl_solve(’Mode-stat-fullDOF’,model);

defT=nl_solve(’Mode-time’,model);

hist=nl_solve(’Mode-time-dataOnly’,model);

histC=nl_solve(’Mode-cpx-time-dataOnly’,model);

defC=nl_solve(’Mode-cpx-time-alpha-real’’MyBas’’-fullDOF’,model);

def1=nl_solve(’Mode-skip-fullDOF’,model);

164

nl solve

Post

The Post command allows performing energy and potential further post treatments of a non-linear
simulation. The output is integrated in the standard fe timesimulation outputs in field out.Post

that is a three columns cell array directly compatible with the iiplot format.
To obtain the post treatments, one must define them prior to starting the simulation. Direct com-
putation of the post-treatments a posteriori is also possible.

� Command PostDefine adapts the TimeOpt structure to initialize fields in the output and
trigger post treatments in the final cleanup phase. The PostDefine call must thus be performed
after the TimeOpt call. Using this command itself prior to a time simulation is enough to obtain
the post treatments.

opt=nl_solve(’PostDefine keys’,opt); % adapts the opt structure.

model=nl_solve(’PostDefine keys’,model); % adapts the opt structure contained in model.

� Command PostLab provides the list of available post treatment keywords. The input is a
structure with fields the post treatment keywords and a logical.

� Command PostHist provides an iiplot curve structure adapted to the post treatments.
On can provide a PostLab structure with fields assigned to 1 for desired posts to obtain the
corresponding curve.

� Command PostCompute computes the post treatments and store them in out.Post. This
command is internally called if the PostDefine command was used prior to the time simulation.
For a posteriori computations, the user must provide the out as a standard fe time format
initialized with Post field and the assembled model. The model must feature a stack entry
info, OutputOptions with field Post containing the PostLab structure.

% Generate a TimeOpt

opt=nl_solve(’TimeOpt’);

Perform the time simulation

def=fe_time(opt,model);

% Initialize for post treatments

[def,RO]=nl_solve(’PostInit EnerM’,def);

model=stack_set(model,’info’,’OutputOptions’,...

struct(’Post’,RO));

% Assemble model with non linearities

model=fe_case(opt.AssembleCall,model);

% Compute post treatments

def=nl_solve(’PostCompute’,def,model);

% display in iiplot

iiplot(def.Post);

165

nl solve

� Command PostInit is an internal function that initializes the output Post field at the start
of the simulation. Early initialization is useful if the post treatments are performed on the fly
by the OutputFcn.

The following post treatments are available

� EnerP The linear potential, or strain energy.

� EnerK The kinetic energy.

� EnerNL The elastic or strain energy stored in the non linearities.

� EnerM The mechanical energy, defined as EnerP + EnerK + EnerNL.

� PDiss The instant dissipated power.

� EnerDiss The cumulated dissipated energy over time.

Command PostEstimate allows analyzing the energy curves to compute

� Fest an estimation of the vibration frequency (based on quasi-sinusoidal oscillations)

� DmpR an estimation of the damping ratio based on the estimated frequency by computing the

dissipated mechanical energy. ζ = 1
4π log

Em(t0)
Em(t1)

� Emax the maximum mechanical energy identified on the cycle analyzed.

� EDiss the dissipated mechanical energy over the cycle analyzed.

The following command options allow altering the estimation

� -cfi to specify the iiplot figure with handle i.

� -bandpassfmax to perform a bandpass from 0 to fmax Hz filtering prior to the analysis.

� -curveName’’name’’ to provide the iiplot stacked curve name to exploit.

� -baseOn’’name’’ to specify on which post treated curve the frequency estimation is made.

� -globalMaxTolval to provide a relative tolerance over which a point is detected as close to
the global maximum. This is exploited to detect the peaks over the energy signal analyzed.

� -localMax to estimate the frequency by detecting the zeros of the signal derivative (less ro-
bust).

� -unit’’II’’ to provide an output unit system.

166

nl solve

� XFcn’’str’’ to provide a function call to be evaluated that can perform further post treat-
ments(e.g. model specific posts). The called function can access out, outLab, st, j1 with
out a matrix containing the output with as many lines as provided curves and as many columns
as outputs data, outLab a cell array containing the labels of each column, st the curve list
(either names or the curves themselves), j1 the curve currently treated.

r1 = nl_solve(’PostEstimate’,def);

r1 = nl_solve(’PostEstimate’,def.Post{1,3});
r1 = nl_solve(’PostEstimate’,{’disp(1)’});
r1 = nl_solve(’PostEstimate’,{’Post_NLsolve(1)’});

TgtMdlBuild,Assemble

Integrated command to generate linearized models around a specific working point. This command
packages the tangent model generation procedures of nl solve Mode-backTgtMdl. The low level im-
plementations are documented in nl spring NLJacobianUpdate (for example keepLin interaction
are documented there).

� TgtMdlAssemble command outputs a fully linearized assembled model, based on the static
state provided.

� TgtMdlBuild command generates a linearized model with superelement coupling containing
the tangent stiffness and damping contributions of all non-linearities. The following command
options are supported

– -keepName allows naming the superelements with the non-linearity name.

– -evalFNL forces recomputation of non-linearities states before generation.

– SEPro to initialize p superentries for the generated superelements.

– setPar to setup parameters associated to the generated superelements, conforming to the
content of the nlpro.

– keepNLProId not to generate tangent superelements for the non-linear properties specified
by their ProId.

– -staticInterp generates a tangent model allowing tangent matrix interpolation between
different static states. The procedure requires the definition of parameters and a method
to compute static states. Static states for MinMax configurations of each parameters is
then performed. Matrices showing differences as function of parameters are kept and an
interpolation rule is defined using the linear finite element functions of a 2npar vertices
hypercube. The output model has stack fields curve,q0 the series of static states with
q0.data providing the parameter points, and info,sCoef providing interpolation rules
for each matrix.

167

nl solve

RA=struct(’par’,Ra,’q0cbk’,{{@my_fun,’ComputeStatic’}});
mo1=nl_solve(’TgtMdlBuild-staticInterp’,model,RA);

Ra is either a Range structure or the content of Range.param (see sdtweb fe range),
q0cbk is a callback in cell-array format.

staticInterp2 implements a more generic method using vhandle.matrix NLJac types for
richer interpolation. In such case one can provide a field .Range in the input options to force
a richer DoE for the static basis. By default griddedInterpolant is used so that the given
Range must be compatible with the interpolation strategy.

% Linearized model generation

% sample model with cubes in contact

model=d_contact(’cubes cbuild’);

% resolve static state

q0=nl_solve(’static’,model);

% linearized model

mo1=nl_solve(’TgtMdlBuild’,stack_set(model,’curve’,’q0’,q0));

% check the result

feutil(’info’,mo1)

SE=stack_get(mo1,’SE’); SE{1,3}

168

nl mesh

Purpose
Integrated mesh modifications and case handling for non-linear applications

Description
Integrated case handling for constraint penalization and coupling component splitting hare imple-
mented in this function.
Some non-linearities require surface/volume remeshing (e.g. definition of conforming interfaces for
contact) or adaptations (generation of thin interface layers). This function regroups such function-
alities. Mesh generation are performed by fe gmsh(interface to gmsh) and fe tetgen (interface to
tetgen, see help fe tetgen).

Conform

The Conform call is an integrated call to generate conforming meshes between two facing interfaces.
The command generates a conforming surface mesh of the face to replace, merges it with the conform
mesh of the second interface, replaces the model face mesh and remeshes the model volume to yield
a new equivalent volume with a conform face mesh.

mo1=nl_mesh(’conform eltsel"FindElt"’,model,sel);

% sel={eltSelToReplace eltSelForReplacement;...}

model is a standard SDT model. sel is a cell array containing in each line two FindElt com-
mands specifying the element selection face to remesh and the element selection face to use for the
conforming interface for replacement.

� Command option eltsel allows specifying in a string a FindElt command restraining the
working area in the original model.

� Command option smartSize allows generating a conforming mesh with a coherent mesh char-
acteristic length.

� Command option gmsh allows using gmsh to mesh the final volume.

� Command option tetgen allows using tetgen to mesh the final volume (by default).

� Command option output asks to output the generated mesh in a .mat file.

� Command option OrigContour asks to keep original positions of mid-nodes of the quadratic
faces delimiting the volume to remesh. This may however yield mesh wrapping problems when
the face to remesh is much coarser than the mesh trace to place for conformity.

nl mesh

� Command option mergeTo allows specifying a FindElt selection command in a string to replace
the mesh on another model selection than the one used to generate the conforming interface
(which uses eltsel.

� It is also possible to provide additional arguments, which will be passed the the nl meshcover

call performed in the procedure.

Limitations: The Conform call only supports generation of conforming interfaces when one interface
contour fully contains the other interface contour. Handling of more complex contour configurations
has not been implemented. Besides, this function has been designed to handle planar surfaces.
Additional operation to work on non planar surfaces are left to the user (e.g. pre/post projections
of the surfaces on a plane).

Contour

Call ContourFrom generates SDT beam1or beam3 contour models for CAD definitions. All formats
readable by gmsh can theoretically be used. Only the .geo, .stp and .igs are tested.
Since .geo files can contain geometric yet non discretized objects, a 1D meshing pass is performed
with gmsh to provide an SDT contour model. This is not supported for other file types.

model=nl_mesh(’contourFrom’,’file.stp’); % not specifying the type

Call Contour generates an SDT face mesh from an SDT beam1or beam3 contour.

model=nl_mesh(’contour’,model);

model is an SDT beam model defining a closed contour.

� Command option lcval allows specifying a characteristic length for Gmsh.

� Command option lcminval allows specifying a minimal characteristic length for Gmsh.

� Command option quad allows generating quadratic meshes.

� Command option keepNode asks to keep the original contour NodeId for the contour com-
mand.

� Command option diag asks to output the Gmsh log file for diagnostic problems.

� Command option single tells nl mesh that a single contour is defined. This is useful when
several closed contours are defined since it is impossible to automatically decide whether each
contour is independent or if they define a single complex contour.

170

nl mesh

� Command option groupval is used in combination to the single command option. This allows
specifying which contour group will be meshed, while other possible contours will define holes.

� Command option algo’’val’’ allows specifying which algorithm gmsh must use (this depends
on the gmsh version, report to the gmsh documentation for more details).

� Command option AllowContourMod allows gmsh adding nodes on the contour provided. By
default gmsh is forced not to add nodes to the lines defining the contour to mesh.

Cover

The Cover call is designed to mesh the interstice between two closed planar contours, when one fully
contains the other. The call is performed as

[newModel,opt,largeContour]=nl_mesh(’cover’,model,{eltsel_large,eltsel_small});

model is a standard SDT model. Variables eltsel large and eltsel small are FindElt calls
defining the element selection of the respectively large surface and small surface (the small being
contained in the large).
The output newModel is the mesh generated from the surface contours.
opt outputs additional information about the mesh generation, it is a struct containing fields
.NodeAdd specifying the potential nodes added in the interstice space meshed,.nodeEdgeSel1 spec-
ifying the NodeId of the nodes located on the eltsel large contour, .nodeEdgeSel2 specifying the
NodeId of the nodes located on the eltsel small contour, and .tname the name of the temporary
file containing the generated mesh.
largeContour provides the original contour in beam elements of the eltsel large selection.
The following command options are available

� merge allows merging the interstice mesh with the inner mesh of the eltsel small selection.

� quad allows generating proper quadratic meshes.

� smartSize allows generating an interstice mesh with a characteristic length in coherence with
the contour mesh length.

� lcval allows setting the characteristic length to Val to the interstice mesher.

� algo‘‘name’’ allows specifying the meshing algorithm name to the gmsh mesher. See the gmsh
documentation for more information.

171

nl mesh

Hole[,Groups,Diff,Drill,Gen]

The Hole command series aims at handling hole detection on surfaces and bore drilling generation.
The following functionalities are avaiable
Command HoleGroups detects holes on a closed surface and outputs a contour model with element
groups relative to each isolated contour. A second output provides the GroupId corresponding to
detected holes.
Command HoleDiff provides surface elements that are inside the holes of a given contour. You
should better exploit lsutilto get a robust result.
Command HoleGen generates a planar surface with a ruled mesh featuring a hole and controlled
radial positions.

� .len length of plate

� .wid width of plate

� .rAnulus radii for base positions

� .ND angular refinement

� .NRext external to bolt radius refinement

� .MatId assign mat/pro id to meshed part

� .noExt remove exterior side

� .Center

� .normal

Command HoleDrill generates cylindrical drills in a model with the possibility to integrate a ruled
bolt mesh.

Replace

The call Replace is designed to replace parts of a model mesh with new given meshes, mesh parts
conformity is assumed. It is performed as

model=nl_mesh(’replace’,model,nodesToReplace,NewModel,nodeIDtoKeep)

model is a standard SDT model. nodesToReplace is a cell array containing vectors of NodeId
specifying the areas to be replaced. NewModel is a cell array containing the new models which will
be merged to the mesh in coherence with the removed elements (specified by nodesToReplace).
nodeIDtoKeep is an optional argument specifying NodeId of the original model for nodes whose
NodeId must not change in the transformation.

172

nl mesh

Control of nodeIDtoKeep per NewModel part is possible by providing a cell array of NodeId list of
the same size than NewModel.
The following command options are available

� setMat allows defining a specific MatId to the output mesh.

� setPro allows defining a specific ProId to the output mesh.

� eltsetFindEltString can be provided to provide an element selection for MatId and ProId

assignment.

� keepNoCheck in combination with the use of a third argument nodeIDtoKeep assumes the
nodes numbering is correct and forces the nodes original numbering without check.

� -jAll asks to join all elements per type, then separated by MatId

� -inSet asks to maintain coherence with EltId sets. EltId sets for which the totality of a
given removed part belonged to will be updated to contain the EltId of the replacement mesh.

Rivet

This command generates rivet drills in a specified contour. A model containing a beam contour can
be provided, or an EltSel string generating a surface selection (see section and the selface option)
on a bigger model. A data structure providing the origins, and rivet radius and washer (or rivet
head radius). The mesh generated between both radius is structured.
The data structure must contain fields

� Orig providing the rivet centers in an [x y z;...] matrix.

� radHole providing the rivet hole radius, either a scalar if all rivets have the same radius, or a
line vector providing each rivet radius separately.

� radWash providing the rivet washer (or head) radius, either a scalar if all rivets have the same
washer radius, or a line vector providing each rivet washer radius separately.

and can optionally contain fields

� plane To directly provide the contour plane normal to define the drilling, in an [nx ny nz;

...] matrix.

� Ns To define the number of mesh segments in the rivet to washer radius area (default 10),
either a scalar if all rivet heads have the same properties, or a line vector defining the property
for each rivet separately.

173

nl mesh

� Nr To define the number of mesh radial nodes in the rivet to washer radius area (default 2),
either a scalar if all rivet heads have the same properties, or a line vector defining the property
for each rivet separately.

� Command option MatIdval allows setting the modified mesh MatId to val.

� Command option ProIdval allows setting the modified mesh ProId to val.

� Command option -fill outputs in second argument a compatible mesh of the rivet bores.

� Command option -allQuad outputs the remeshed model with elements only.

Following example meshes a rectangular contour with a few rivet drilling inside.

% Generate a global contour

model=struct(’Node’,[...

1 0 0 0 0 0 0;

2 0 0 0 10 0 0;

3 0 0 0 10 2 0

4 0 0 0 0 2 0], ’Elt’,[]);

model.Elt=feutil(’ObjectBeamLine 1 2 0 2 3 0 3 4 0 4 1’,model);

model=feutil(’refinebeam .2’,model);

%feplot(model)

% define rivet positions, eventually planes

RO=struct(’Orig’,[3 1 0;6 1 0;9 1 0],...

’radHole’,[.2;.2;.2],...

’radWash’,[.8;.8;.8]);

model=nl_mesh(’Rivet’,model,RO);

cf=feplot(model);

ShellSkin

Generation of a skin mesh from shell elements.
Syntax: mo1=nl mesh(’ShellSkin,model,RO. model is a model with shell elements, RO is a faculta-
tive option structure input. Output mo1 is a model with added volume elements.
By default, all shell elements are selected, and the average thickness is computed using the associated
integration rules. A symmetric extrusion following the shell normals is performed.
Command option Get outputs an exteral model rahter than an addition to the existing model. The
following options are available:

174

nl mesh

� .sel to provide a Findelt command to select target shell elements.

� .twoSided to generate a volume extrusion from both sides.

� .vol to define the volume mesh format: 0 will generate shell skin meshes linked with rigid
elements, 1 will generate volume elements, 2 will generate volume elements linked with rigid
elements to the shell.

� .MatId to assign a new material identifier to the new elements. Set to NaN to leave initial
MatId.

� .ProId to assign a specific ProId to the new elements, one can set to 0 if only the topology is
used.

� .New to add the new elements to the existing model, with new EltId.

% Generate a shell mesh

model=femesh(’testquad4 -divide 4 4’);

% Generate a wolume mesh with rigid connections to the shell nodes.

RA=struct(’sel’,’groupall’,’vol’,2,’twoSided’,1);

mo1=nl_mesh(’ShellSkinGet’,model,RA);

cf=feplot(mo1); fecom(cf,’colordagagroup’)

GmshVol

This call integrates the generation of a volume mesh from a face mesh with gmsh.

model=nl_mesh(’GMSHvol’,model);

model is a standard SDT face mesh model.

� Command option setmat allows specifying a specific MatId to the output mesh.

� Command option setpro allows specifying a specific ProId to the output mesh.

� Command option keepFaces asks to keep original NodeId of the nodes located on the face
mesh.

� Command option lc specifies a characteristic length for gmsh.

� Command option clmin specifies a minimal mesh length for gmsh.

� Command option clmax specifies a maximal mesh length for gmsh.

175

nl mesh

ExtrudeLayer

This command generates a non trivial extrusion of a face mesh following the face normal at each
node, to generate a volume layer.

model=nl_mesh(’ExtrudeLayer thick Val’,model);

model is an SDT model with shell elements (a surface definition).
Command option thick specifies the extrusion thickness. Command option setmat allows specifying
a specific MatId to the output. Command option setpro allows specifying a specific ProId to the
output.

StackClean

This call cleans up a model stack when mesh modifications have been performed. It cleans up stack
entries definition that became incoherent with some mesh modifications.

model=nl_mesh(’StackClean’,model);

Command option rmuns removes stack entries that could not be sorted out. Command option rmmod

removes stack entries affected by the model modifications.
See also celas, p spring, fe gmsh

176

spfmex utils

Purpose

OfactOptim

This command can be used to set spfmex parameters in order to optimize computation speed for
factorization and / or solving.
spfmex utils(’OfactOptim’,ki,RO,ofact(1,’lu’));

ki is the matrix that is used for the optimization. RO is a data structure defining options with
following fields:

� .nCompt Number of computation for result averaging.

� .maxDomain Max size of blocks of the elimination tree (fraction of matrix size).

� .maxZeros Max number of zeros in the blocks of the resolution tree (fraction of matrix size).

� .refineStep Number of step to refine the optimal parameter pair found in the first step.
Command option -refine must be added to perform the refine step.

The last argument ofact(1,’lu’) is needed in order to call directly spfmex utils.
Available command options are

� -setopt use default RO.

� -refine performs refine step for optimal search.

� fact to benchmark factorization step.

� solve to benchmark resolution step.

� -plot to plot history in iiplot

Following example optimize only solving:

ki=rand(20);

RO=struct(’nCompt’,100,... number of computation for result averaging

’maxDomain’,2.^[4:7],... parameter 1

’maxZeros’,logspace(-3,1,5),... parameter 2

’refineStep’,3); % refine results to most relevant parameters

spfmex_utils(’ofactoptim solve-refine’,ki,RO,ofact(1,’lu’)); % method,solve,fact,-setopt,refine,

nl bset

Purpose
Non linearity to support handling of enforced displacement
This is implemented in nl spring(’nl bset’). This currently assumes the existence of a stiffness
and xxx viscous damping xxx.

ctc utils

Purpose
High level contact handling in SDT/NL and SDT/contact module.

Generate, GenerateContactPair

This command generates contact data necessary to perform computation of observation and tangent
matrices, and possible feplot displays (when using p contact this command is handled with the
syntax
ctc utils(’Generate’,model,data)

model is a standard SDT model, data is a structure or a cell array of structures defining contact
interactions. data has the fields

� name Optional. The interaction name.

� master an element selector string which result generates the Face set of the master surface,
see sdtweb FindElt. The master is necessarily associated with elements in the model.

� slave An element selector string which result generates the Face set of the slave surface (for
master/slave convention see section 3.2), see sdtweb FindElt.

The following fields are optional, and only required for tangent matrix computations. xxx why not
set

� contact A string providing the contact law, or the corresponding integer, among the following
list. 1: linear; 2: exponential; 4: tabular.

� Fu A string providing the contact law parameters.

� friction A string providing the friction law or the corresponding identifier, among the fol-
lowing list. 0: none ; 1 or 11: coulomb strict ; 2 or 12: coulomb reg ; 3 or 13: coulomb

arctan ; 4 or 14 coulomb scaledreg.

� Fv A string providing the friction law parameters.

� ProId to specify the target ProId.

If sequentially called for a single model, Generate will concatenate the contact data model with new
data. Command option -reset resets the contact data and only keeps the result from the last call.
For SDT/NL models,

� Command GenerateContactPair allows a direct generation of contact elements in the model.

� generating the minimal contact data model outside the global one for visualization optimiza-
tion, command option Obs can be used.

ctc utils

Set SetPro

This command handles high level contact/friction laws assignments
model=ctc utils(’setcontId par val’,model);

contId is an identifier of the contact law to define. One can either use ctcnamename, with name

the contact interaction name (corresponding to the model stack entry), or proidval with val the
contact elements ProId attached to the contact law.
One can then assign any property par to val regarding contact and friction data in the command
string. Accessible parameters are ContactLaw, FrictionLaw, Fu, Fv, TangStick, Euler, and other
fields relative to contact are supported.
The alternative command setEdit allows editing fields Fu and Fv by only specifying the varying
parameters instead of redefining the full sub-property.
The following examples illustrate the syntax use for a model with contact property my ctc and ProId

1001:

% two equivalent calls to assign a linear contact property

% of stiffness 1e10 and fixed jacobian value to 1e9

model=ctc_utils(’set ctcname"my_contact" ContactLaw"linear" Fu"Kc 1e10" KcLin 1e9’,model);

model=ctc_utils(’set ProId 1000 ContactLaw 1 Fu"Kc 1e10" KcLin 1e9’,model);

% call to assign a friction law with tangent sticking property

model=ctc_utils(’set ProId 1000 FrictionLaw11 Fv"mu 0.3 kappa 1e5" TangStick 1’,model);

% two equivalent calls to modify kappa in the friction law prop Fv

model =ctc_utils(’set ProId1000 Fv"mu 0.3 kappa 1e3"’,model); % need to specify the full Fv

model=ctc_utils(’setEdit ProId 1000 Fv"kappa 1e3"’,model); % with edit no need to specify all Fv param

Definition of customized local orientation MAPs is possible using further arguments,

MAP=struct(’dir’,{{0,1,0,’v3x’,’v3y’,’v3z’}},...

’lab’,{{’v1x’,’v1y’,’v1z’,’v3x’,’v3y’,’v3z’}});

model=ctc_utils(’set’,model,’MAP’,MAP);

remove

This command allows removing contact elements and/or properties in the model, and the contact
coupling superelement tgtctc.
model=ctc utils(’RemovecontId’,model);
contId is an identifier of the contact law to define. One can either use ctcnamename, with name

the contact interaction name (corresponding to the model stack entry), or proidval with val the
contact elements ProId attached to the contact law.
The following command options are available:

� all allows removing all contact elements at once.

180

ctc utils

� SEinModel allows removing the tangent contact superelement tgtctc generated by command
TangentMdlinModel.

� obs allows removing the minimal contact observation data in an SDT/NL model generated
with command GenerateObs.

� -keepSE allows keeping the coupling superelement tgtctc in the model.

� -keepStackSE removes the superelement declaration but keeps the stack entry SE,tgtctc.

GetCPro

This command recovers contact properties in the model. The base syntax is [cproid,cil,cpro]=ctc utils(’GetCPro’,model)

model is an SDT model with contact elements. The outputs are cproid a column vector providing
the ProId of contact elements in the model, cil an ElPropmatrix of p contactentries corresponding
to cproid and cpro stack entries of type pro associtated to the contact properties.
The following command options are available

� slide to recover contact elements with sliding friction only (Euler property activated).

� -zt to also recover elements with p zt properties.

� -ztOnly to only recover elements with p zt properties.

GetObs

This command outputs data necessary to perform gap observations and generalized force projections
for external computations, and feplot selections to display contact fields data.
data=ctc utils(’GetObs’,model)

data=ctc utils(’GetObs ProIdi’,model) data=ctc utils(’GetObs Name’’val’’’,model) data=ctc utils(’GetObs’,model,def)

model is a standard SDT model, on which command Generate was performed, or which contains
contact elements.
Command option Name”val” allows specifying a contact interaction name for which observation data
are necessary.
data is a cell array containing as many lines as declared interactions. The first colum contains the
type, here fixed as nl contact, the interaction names, the third one contains contact data, in a
structure format with fields

� DOF The DOF vector on which observations are computed.

� NORT Matrix [CNOR]. This is the observation matrix of normal gaps at the contact points.

� TANT Matrix [CTAN]. This is the observation matrix of relative tangential displacements at
the contact points. It is empty if no friction is asked.

181

ctc utils

� wjdet The ponderation product J(xi)ωi for each contact point.

� GaussCoor Coordinates of the contact points.

� adof DOF vector corresponding to all contact data in the model, ordered as GaussCoor field
, with DOF .50 for contact pressure, .51 for friction constraint along the first local direction,
.52 (when existing) for friction constraint along the second local direction.

� iNL Index vector of current contact data in vector adof

� Sel A feplot selection for visualization purposes

By default, the observation is based on the constrained DOF (Case.DOF) of the global model.

� Command option NoT To generate the observation on the full model DOF.

� Command option NoPlace To generate the observation on the contact model.

� Command option -NoSel Not to generate the feplot selection.

� Command option -selOnly allows outputting the visualization mesh only.

� It is possible to provide a deformation structure with field FNL as a third argument to adapt
the observation to the deformation DOF.

GetFNL

This command allows computing a posteriori FNL field from a deformation field missing the non-linear
data.
def=ctc utils(’GetFNL’,model,def);

GetWeight

This command output in a cell array for each asked ProId, a struct with fields EltId and wjdet with
a center node integration rule to provide the weight, or surface associated to each contact element.
data=ctc utils(’GetWeight’,model);

ParInit

This command sets up parameter data in contact properties. They can be used to obtain a param-
etered tangent model with command ctc utilsTangentMdl.
model=ctc utils(’ParInit’,model,par);

model is a standard SDT model, on which command Generate was performed, or an SDT/NL
model with contact elements. par is a parameter definition entry or a cell array of such entries. See

182

ctc utils

.param field description in fe range to obtain more information about these entries, the following
restrictions apply

� field .info is mandatory and must provide the parameter type and ProId using a formatted
string as typ-proidval. Available types are

– Kn to apply proportional variations of the contact siffness.

– Mu to apply proportional variations of the friction coefficient.

– Omega to apply proportional variations of the sliding velocity with Euler formulation.

� Only struct and string format definitions of parameter entries are accepted.

Zeto thickness elements are also supported. The same syntax can be used. Parameter types in field
.infp are specific as

� Kn to apply proportional variations of the normal siffness.

� Kt to apply proportional variations of the planar siffness.

� KnKt to apply both Kn and Kt at once.

TieSe

This command generates a surface elastic bonding superelement, that corresponds to TIE or GLUE
notions in most codes. It takes the same input as a ctc utilsGenerate call but will either output
a coupling superelement with command TieSe or the model to which the superelement has been
added with command TieSeAdd.
Syntax is SE=ctc utils(’TieSe’,model,RA);

First input is a finite element model, second input is a struture RA with mandatory fields .slave and
.msster providing surface selections on which contact will be formulated. RA can contain any contact
property field handled by ctc utilsGenerate, so that the assembled superelement can integrate the
desired formulation.

Ctc2Zt

This command replaces contact elements with zero thickness elements. model=ctc utils(’Ctc2Zt’,model).
The contact elements are replaced by zero thickness elements with p zt properties. A fe casegConnectionSurface

constraint is applied between the zero thickness elements and the slave surface. If the under-
laying mesh is second order the new elements are also unjoined from the master surface and a
fe casegConnectionSurface constraint is applied between the zero thickness elements and the
master surface. This is required as p zt properties are applied to first order element topologies.
For bilinear contact properties the same contact stiffness density is applied, for other cases an
automated estimation is performed. Tangential coupling properties are by default based on the

183

ctc utils

kappa values in p contactlaws. No coupling is applied for models with no friction or no friction
law.
The following command options are available

� -proidval to only convert elements with the specified ProId.

� -mtie to force unjoin and constraint the master surface side in all cases.

% Model with contact properties

model=d_contact(’Cubes cbuild’)

feutil(’info’,model)

% Convert to zt elements

model=ctc_utils(’Ctc2Zt’,model)

feutil(’info’,model)

MpcSe2Ctc

This command converts a coupling superelement based on a penalized fe casegConnectionSurface

constraint into a contact formulation. Contact elements are build on the master side of the constraint.
By default contact properties are set as a bilinear contact with automatic stiffness density and a 2D
sliding coulomb friction model with planar coupling for tangent models TangStick=1, contact states
are evaluated on any present static state in the model stack curve,q0. It is possible to provide other
properties.
The base syntax is model=ctc utils(’MpcSe2Ctc’,model,list)

model is a model with superlements generated by penalized fe casegConnectionSurface constraints
(see feutilbCaseC2SE). list is a column cell array of superelement names to be converted. In
option the second column of list can be a structure providing contact properties to be used as in
GenerateContact command.
The following command options are available

� -useDOF to restrain original selections to elements that were effectively matched for the con-
straint.

� -flipSel to revert slave and master sides for contact in comparison to the constraint selections.

� -nocqinit not to setup the constact state estimation based on static states.

% Model to couple

model=d_contact(’Cubes’);

% Generate a penalized connection surface constraint

model=fe_caseg(’ConnectionSurface -dens -KpAuto -MaxDist1e-6’,model,’tie’,...

’group1 & selface & innode{z==1}’,’group2 & selface & innode{z==1}’);

184

ctc utils

% compute modes

d1=fe_eig(model,[5 10 1e3]);

% convert penalized constraint to contact coupling

model=ctc_utils(’MpcSe2Ctc’,model,{’tie’});

% compute modes and check frequencies

d2=nl_solve(’ModeSkip-fullDOF’,model,[5 10 1e3]);

[d1.data d2.Mode.data(:,1)]

Zt2Ctc

This command converts zero thickness elements to contact elements. This is currently a partial
implementation for normal contact without friction and hexa8 based surface only. Please report to
SDTools if a broader application case is necessary. A bilinear contact model based on p zt properties
is setup.
model=ctc utils(’Zt2Ctc’,model);

TangentMdl

This command outputs a coupling superelement containing the tangent contact friction stiffnesses.
SE=ctc utils(’TangentMdl’,model,def);

model=ctc utils(’TangentMdl inModel’,model);

model is a standard SDT model, on which command Generate was performed, or an SDT/NL model
with contact elements. def is a standard SDT deformation curve see sdtweb def which will be used
to compute tangent coupling matrices. def should have a single column if a static state is provided.
An optionally second column can be provided to specify a velocity.
The following command options allow specific use of the command

� inModel asks to output the input model with added coupling superelement relative to the
tangent state, with name tgtctc.

� -clean combined with inModel, removes the contact elements and properties in the model, so
that the output model only features an equivalent tangent coupling instead of contact.

� -sepKj asks to output the superelement with coupling matrices respectively split for contri-
bution.

� -setPar for use in models with parametered contact and in conjunction with inModel to
output a parametered tangent model.

� -real to generate a superelement with conservative matrix types only (adapted to real mode
computations).

� -evalFNL to update non-linear static states based on stack entry curve,q0 prior to generate
the tangent model. This option is mandatory if the static state does not have a .FNL field.

185

ctc utils

Show

This commands performs visualization operations to display contact fields in the FEM. Contact
fields are expressed at Gauss points, so that a triangulation of the contact Gauss points is necessary.
This is performed by the GetObs command. If this was not performed earlier, Show will perform it
itself. It can be noted that for SDT/NL models, this information may be precomputed (and stored
in def.FNL.NL) by assigning parameter Sel to 1 in the contact parameter.
By default, the display units are MPa for pressures, and µm for lengths.
Command Show allows visualizing standard contact fields generated by SDT/contact module or
SDT/NL, which are the following

� Pn Contact pressure, identified by the DOF .50.

� Ft1 Friction constraint in first local direction, identified by the DOF .51.

� Ft2 Friction constraint in second local direction, identified by the DOF .52.

� G Gap, identified by the DOF .54.

� W Sliding velocity, identified by the DOF .55.

� Pta Friction constraint norm, computed using Pt1 and Pt2.

� LMu Local Mu, computed as the ratio of Pta to Pn.

It must be noted that the model has to be contained in an feplot figure to allow display. If argument
def is omitted, cf.def will be used.
The following command options can be used

� ProIdval allows specifying the contact element of ProId val to be displayed. By default all
groups are displayed.

� InMesh allows visualizing the contact fields in the full mesh in transparency. By default only
the surfaces supporting contact data are displayed.

� unitID allows specifying a unit different from the default one. The user must then specify the
unit system ID (e.g. SI, or TM) in which the data has to be displayed.

� EltSelEltSel String, in combination with InMesh allows specifying a mesh sub-selection
in which the contact surfaces will be displayed, using a string EltSel String that will be
exploited by feutil(’findEltEltSel String,cf.mdl);.

� -reset Asks to reset the feplot display from scratch instead before generating the new display.

� Rel Asks to display the field variation relative to its initial state (first deformation column).
This is useful to display small variations from a static state.

186

ctc utils

� Vel Asks to display the field velocity, computed by numerically deriving the provided field.

The following command lines illustrate how Show can be used

% display contact pressure

ctc_utils(’showPn-reset’,cf.mdl,def);

% display first direction firction constraint in the full mesh

ctc_utils(’showFt1 InMesh’,cf.mdl,def);

% display the friction constraint norm relative to its initial state

ctc_utils(’ShowPta Rel -reset’,cf.mdl,def);

% display the gap field in mm rather than in micrometers

ctc_utils(’ShowG unit"MM"’,cf.mdl,def);

Examples

Examples are provided in function d contact.
A simple cube model and a simple disc brake models are available, respectively using the commands
d contact(’cubes’) and d contact(’DiscBrake’).
Application examples are then available in the script command section:

% contact handling demonstration

d_contact(’script Cube_Basic’)

% disc brake with polar friction basis and convection observation

d_contact(’script Brake Polar’)

% simple static resolution

d_contact(’script Brake’)

187

p contact,nl contact

Purpose
Element property function for contact. This function is used by SDTools for internal developments
and is not distributed with the base SDT. Integrated calls for high level handling are available using
ctc utils, this section aims at documenting the implementation details.

Syntax

il=p_contact(’dbval 1’)

Description
For theory see section 3.1 , for implementation details, see section 3.2 . Contact is defined in SDT
using contact elements. For 3D volumes, contact elements are then 3D shell elements. Since contact
is non-linear, these elements are used in combination with the function nl contact for computation
of the contact force. See nl spring, nl solve to find out about non-linearities handling in the
SDT/non-linear vibrations toolbox.
p contact handles the contact formulation for integration, the il data is a structure that must be
stored as a pro entry in the model Stack to comply with usual handling of non linear springs in SDT
(through nl spring).
Stack entry pro,Contact then follows the format

il = struct(’type’,’p_contact’,....

’il’, il,...

’NLdata’,NLdata,...

’MAP’,Map));

fields il, MAP, and NLdata are defined below.

il : contact formulation parameters

il =

[ProID fe_mat(’p_contact’,’SI’,1) ...

Match Integ ContactLaw SlaveId FrictionLaw Euler TangStick LocalFric1stDir TOIM]

Physical parameters are stored in p contact NLdata. The formulation options are as follows:

p contact,nl contact

ProID Element property identification number
type Identifier obtained with fe mat(’p contact’,’SI’,1)

Match Matching strategy (tolerance and choice of contact points). Format is
i.val.
i (integer part) select the matching strategy. 0 (default): Gauss integration
point and matching to the volume underlying the slave surface, 1: Gauss
point matching to the slave surface face mesh (quicker), -2 matches using
the element nodes as contact point (warning: relevant only when Integ
is set at -2000 meaning nodal pressures).

val (digits after the comma) the tolerance token. Set to 0 uses the default
matching radius of 1. With x.1 lets p contact define the matching radius
based on the slave surface mesh characteristic length (e.g set Match to 1.1

to use Gauss contact points matched to the surface with a radius based on
the mesh). To customize the radius to r define val as val= 10*r+9. Thus
Match=0.209 to use Gauss contact points matched to the slave surface
underlying volume with a radius of 20. For radii less than 1 the same
approach stands, as 1.029 with be used to define a radius of 0.2.

Integ Contact elements integration rule (see integrules for selection). It will de-
termine the Gauss points used for contact. Adding 1000 to the integrule
identifier allows activating a CPress operator converting contact resultants
at node to contact pressures at nodes or contact points. This is currently
used by nl contactl. Adding .1 to Integ will generate the observation
based on the deformed mesh according to a deformation curved stored in
the model stack as curve,initContact.

ContactLaw contact law selection : 1 bilinear, 2 exponential pressure, 3 tabular, 4 power
law, 9 external contact law function (user defined). Lagrange contact is
defined in nl contactl.

189

p contact,nl contact

SlaveId Identification of the set specifying the slave surface, by Id. The slave set
data must then contain and ID field with a relevant value. For generation,
see ctc utils Generate or feutil AddSet.

FrictionLaw Friction law selection : 0 none, 1 Coulomb unidirectional, 2 Regularized
Coulomb unidirectional with a penalty slope, 3 Regularized Coulomb uni-
directional with an arctangent function, 9 external friction law function
(user defined). These are all 1D friction laws, to have their 2D equivalent,
add 10 to the number: 11, 12, 13 and 19 are supported.

Euler Euler formulation for the sliding velocity computation, to be used with
friction. This adds a sliding velocity to the observation on the velocity
field. This is useful to simulate displacements on fixed meshes. Use 1
for rotating bodies (this will add the Euler deformation of the meshes as
well) or 2 for translating bodies. The Euler formulation assumes sliding
is happening in the first friction direction, see MAP definitions below and
p shell.

TangStick Sticking tangent state, for mode computation. If contact is stuck, you may
want to add a symmetric stiffness coupling representing the impossibility
for the system to slide in this direction for small vibrations. 0 none, 1 used.

LocalFric1stDir Ordering of local friction directions. For each contact point, a local basis
is defined, with the 3rd direction as the normal. This option allows cus-
tomizing the ordering of the local friction direction. If set to 2 the friction
directions are permuted and the new first friction direction orientation is
made the same regardless of the normal direction. Is is possible to reverse
the orientation by setting this value to -2. Set this to 0 to deactivate it.

TOIM Topology Offset Induced Momentum, default to 0. If a clearance exists
in the mesh topology between contact surface candidates, one can choose
whether this has to be accounted for to define relative movement obser-
vation. If this is considered the observation will consider the clearance as
a rigid section thus transmitting moments between the spaced contacting
points. This feature is mostly useful when considering contact between
shells, where one must account for the shell thickness. Set 0 to ignore (the
default for solids), or 1 for use.

MAP : orientation for contact and friction

The contact normal is defined by the shell element normal. By default, friction directions are defined
element-wisely depending on their orientation. If you want to control these directions, or even use
customized local frames, a map needs to be defined, and added to the il data structure. These
orientation maps are detailed in p shell(of mk(’BuildNDN’) integration rule 23).
For p contact, the map third direction v3, (v3x,v3y,v3z) is fixed in the contact normal direction

190

p contact,nl contact

(of the element). The first two directions v1 and v2 concern friction directions and can be modified.
It typically suffices to define the first direction, the second one being completed to form a direct
orthogonal frame. The first vector v1x,v1y,v1z is built in the direction of r lines (element edge
defined) and v2x,v2y,v2z is tangent to the surface and orthogonal to v1.
For example, to fix the first sliding direction in the y direction of the global frame, and keep the
third direction as the local normal, the map can be defined as

MAP=struct(’dir’,{{0,1,0,’v3x’,’v3y’,’v3z’}},...
’lab’,{{’v1x’,’v1y’,’v1z’,’v3x’,’v3y’,’v3z’}})

To define the first sliding direction at 45 degrees of the global frames x,z direction,

MAP=struct(’dir’,{{1/sqrt(2),1/sqrt(2),0,’v3x’,’v3y’,’v3z’}},...
’lab’,{{’v1x’,’v1y’,’v1z’,’v3x’,’v3y’,’v3z’}})

It is possible to define a field Orig in the format [x0 y0 z0] in the local contact MAP for use with
the definition of rotation in the fixed frame Euler=1.

NLdata : Defining contact and friction laws parameters

The contact and friction laws (see section 3.3 for details) are handled by the function nl contact.
This is a specific non linear function, see nllist, and nl fun for more details. The NLdata is a
structure with fields

NLdata=struct(’type’,’nl_contact’,...

’Fu’,’Kc 1e12’,...

’Fv’,’Mu 0 KtLin 50’,...

’cqoff’,0,...

’Vel’, 0,...

’KcLin’, 1, ...

’Sel’ , 0 ,...

);

191

p contact,nl contact

type fixed value defining the non linearity type to be nl contact

Fu the contact law parameters, in a string format (defined below)
Fv the friction law parameters, in a string format (defined below)
cqoff offset for gap computations. This is a scalar added to the gap vector. To

allow taking into account topology offsets (e.g mesh showing open contact),
one can set cqoff either to +Inf to generate an offset vector based on the
gap observation of the mesh with zero deformation, or to -Inf to generate
an offset vector based on the positive only gap observation of the mesh with
zero deformation.

Vel sliding velocity. This is a scalar added to the sliding velocity vector when
using Euler friction formulations.

KcLin fixed Jacobian contact stiffness. This is a scalar defining a linear bilat-
eral contact for the Jacobian computation in time simulations using the
NLNewmark scheme of fe time, to improve convergence.

Sel to output the selection generating the gauss point mesh for contact field
observation

nodeVel an optional field to provide a restricted list of NodeId subjected to fixed
frame motion (option Euler) if needed. The restriction is then applied
to the contact points whose gap observation involves DOF relative to the
nodes specified.

The contact law parameters Fu are defined in a string interpreted by nl contact depending on the
contact law specified in the il field.
The contact laws implemented deal with gap/pressure relationships to conform with the
Signorini law.
The string is a succession of names and values representing the reserved parameter name and its
associated value. The parameters interpreted depend on the contact law and are defined below. It
is also possible to specify the internal laws parameters at low level by specifying the data vector
specified.

192

p contact,nl contact

1 linear Parameter Kc giving the contact stiffness. E.g. NLdata.Fu=’Kc 1e12’ – or
vector [Kc].

2 exponential law Parameter pz defines the contact pressure at zero gap and lambda defines
the exponential coefficient. E.g. NLdata.Fu=’pz 1e2 lambda 75e4’ – or
vector [pz lambda].

3 tabular contact law Parameter CurveId gives the curve ID (stacked in the model) giving the
behavior. The curve is of the standard SDT format (sdtweb curve). With
field X giving overclosures (opposite of the gap) and field Y giving the cor-
responding contact pressures. E.g. NLdata.Fu=’CurveId 1’ – or vector
[CurveId].

4: power contact law Parameter pz defines the contact pressure at zero gap and parameter power
defined the power used on the gap. The local contact pressure is then
computed as fN = pz · (−g)power if g < 0 and 0 else (which will induce a
positive contact force). The tangent state uses the derivative of the given
power function. E.g. NLdata.Fu=’pz 1 power 3’ – or vector [pz power]

.

9: external/user defined The data string starts with the name of the non linear function called,
followed by the parameters defined for the said nl function, see nl fun.
E.g. NLdata.Fu=’nl mycontact Kc 1e4’. Note that the keywords Fu,

Fc, cqoff, KcLin are reserved and must not be used in subfunctions.
Parameter interpretation, may fail in such case.

9: Lagrange contact This is an external non linear function,nl contactl. This law does
not take any parameter, such that the .Fu field need to be set as
NLdata.Fu=’nl contactl’. Only a static model (based on the status
method) has been implemented, to be solved with nl solve Uzawa.

The bilinear law allows controlling the contact surface non-linear behavior for simplified studies.
These variations are available with the string input format of the contact law definition. One can
then use command option SymForceSetval to define a linearized behavior for transient and mode
computation. The impacted elements can be restricted to a list defined by an EltId element set
named SymForceSet stacked in the model.

� For SymForceSet1, the contact elements underlying the elements declared in set SymForceSet
will be forced to contact and behave linearly, thus defining a partial symmetric bilinear cou-
pling.

193

p contact,nl contact

� For SymForceSet2, all contact elements follow a symmetric bilinear coupling.

� For SymForceSet3, the same transient behavior than for SymForceSet1 is defined, but modes
will be computed considering effective contact coupling exclusively with the declared elements
in set SymForceSet.

� For SymForceSet4, all contact elements follow a symmetric bilinear coupling if any contact
point is effectively in contact.

Eventually, using contact law 1000 will use the static state stacked in the model to generate a bilinear
contact behavior for points into contact and no contact for opened points. This is mainly used to
simplify the behavior in transient simulations, mostly for verification purposes.

The friction law parameters Fv are defined in a string interpreted by nl contact depending on the
friction law specified in the il field. The string is a succession of names and values representing
the reserved parameter name and its associated value. The parameters interpreted depend on the
friction law and are defined below. It is also possible to specify the internal laws parameters at low
level by specifying the data vector specified.
0: no friction the string can be empty (no interpretation) E.g. NLdata.Fv=’’.

1, 11: Coulomb law Parameter Mu gives the friction coefficient, optional parameter Nu gives the
tangent sticking coefficient property, see section 3.3 .E.g. NLdata.Fv=’Mu

0.2’ – or vector [Mu Nu].

2, 12: Regularized
Coulomb , linear

Parameter Mu gives the friction coefficient, parameter KtLin gives the slope
a zero sliding velocity, optional parameter Nu gives the tangent sticking
coefficient property, see section 3.3 .E.g. NLdata.Fv=’Mu 0.2 KtLin 50

Nu 0.1’ – or vector [Mu KtLin Nu].

3, 13: Regularized
Coulomb , arctangent

Parameter Mu gives the friction coefficient, parameter KtLin gives the slope
a zero sliding velocity, optional parameter Nu gives the tangent sticking
coefficient property, section 3.3 . NLdata.Fv=’Mu 0.2 KtLin 50 Nu 0.1’

– or vector [Mu KtLin Mu].

4, 14: Regularized
Coulomb, scaled linear

Parameter Mu gives the friction coefficient, parameter KtLin gives the slope
a zero sliding velocity, optional parameter Nu gives the tangent sticking
coefficient property, see section 3.3 .E.g. NLdata.Fv=’Mu 0.2 KtLin 50

Nu 0.1’ – or vector [Mu KtLin Nu].

194

p contact,nl contact

9, 19 external/user de-
fined

The data string starts with the name of the non linear function called,
followed by the parameters defined for the said nl function, see nl fun.
E.g. NLdata.Fu=’nl myfriction Mu 0.4’. The same reserved keywords
than for external contact law definition apply.

9: Lagrange friction This is an external non linear function, nl frictionl. Parameter
Mu gives the friction coefficient. The .Fu field needs to be set as
NLdata.Fu=’nl frictionl Mu 0.5’. Only a static model (based on the
status method) has been implemented, to be solved with nl solve Uzawa.

Default values

It is possible to obtain default values for NLdata or p contact data, using

% Standard il field, for ProId 1

il = p_contact(’dbval 1 -struct’)

% Standard il field with MAP defining first sliding direction along global x

il = p_contact(’dbval 1 tan1dx -struct’) % 1D friction

il = p_contact(’dbval 1 tan2dx -struct’) % 2D friction

% Standard il field with MAP defining first sliding direction along global y

il = p_contact(’dbval 1 tan1dy -struct’) % 1D friction

il = p_contact(’dbval 1 tan2dy -struct’) % 2D friction

% Standard il field with a polar MAP

il = p_contact(’dbval 1 polar -struct’)

% Standard il field with a polar MAP set at a custom origin [20 0 0]

il = p_contact(’dbval 1 polar o 20 0 0 -struct’)

Since the standardized default output of dbval commands is a il line vector, command option
-struct has been added to allow pro entries under the struct format, to set in the model stack.
Default MAPs are exploitable in the dbval command that can be used by specifying the MAP name
in the dbval command. These MAPS are 2D maps in the friction plane,

� tan1dx or tan2dx defines the first friction direction to be along the x global axis, 1d or 2d

specifies the number of friction directions considered.

� tan1dy or tan2dy defines the first friction direction to be along the y global axis, 1d or 2d

specifies the number of friction directions considered.

� polar defines a polar MAP along the global frame origin.

� polar o x0 y0 z0 defined a polar MAP with origin set to the point of coordinates [x0 y0

z0].

195

p contact,nl contact

It is possible to obtain NLdata fields using nl contact(’db’). Without other information, a default
field will be output, but it is also possible to give the wanted parameters. In this latter case, please
note that all mandatory parameters must be specified.

% default field (ContactLaw=1, FrictionLaw=0);

NLdata=nl_contact(’db’);

% Parameters for a tabular contact law (3)

% and regularized Coulomb friction law (12)

NLdata=nl_contact(...

’db cqoff 0 Vel 0 KcLin 1e4 Fu’’CurveId 18’’ Fv’’Mu 0.3 KtLin 50 Nu 0.25’’’);

The il, NLdata and MAP fields can be edited using ctc utilsset command.

elementsDefining contact elements

A contact implementation requires the definition of a slave surface and a master surface. For the
latter one, contact elements must be defined based on the underlying surface. Integrated calls can
used with ctc utilsGenerateContactPair (see example below). The steps necessary to define
contact and the corresponding lower level calls are detailed in this section.
The slave surface must be stored in the model stack, with an explicit ID, as explained in the il

definition. It can be generated using feutilb:

data=feutilb(’FaceSet’,model,EltFaceSel); % generate a FaceId set

data.ID=1;

model=stack_set(model,’set’,’slave’,data); % stack in model

model is a standard SDT model and EltFaceSel is an element selector string (see sdtweb findelt),
that must generate a surface selection. Command option -ID allows directly specifying a set ID.
The generation of the contact elements is handled by nl contact, with call build:

model=nl_contact(’build’,model,EltFaceSel);

model is a standard SDT model and EltFaceSel is an element selector string (see sdtweb findelt),
that must generate a surface selection. By default the contact elements ProId is incremented from
the model. Note that no MatId is associated to contact elements.
Command option ProIdVal allows specifying the contact elements ProId to Val.

Contact output

The non-linear contact forces are stored in the def.FNL field, see nl spring. The non-linear con-
tact DOF are defined using defined DOF extensions, .5, 51, .52, .53, .54, .55, respectively
corresponding to the contact pressure F N, the friction pressure in the first friction direction F T1,

196

p contact,nl contact

the friction pressure in the second friction direction F T2, the Eulerian deformation Utt (geometric
deformation in the first friction direction when Euler sliding is applied), the gap G, the sliding ve-
locity norm W. Not all instances are always present depending on the chosen contact formulation.
.5, .53 and .54 are at least always output.
This is a case where the same buffer is used for .unl and .snl. .snl contents are FN , FT1, FT2, Utt.
The interlacing is also optimized for MATLAB operations and thus uses g at all Gauss points, the
uT1 at all Gauss, ...

Time integration callbacks

� AssembleCall is used to generate proper assembly. The current nominal call is returned by
nl spring(’AssembleCall’).

The preparation is done in an Init and Exit phase. At the end of the Exit phase, model.DOF=Case.DOF
and the original model DOFs are stored in Case.mDOF assemble -fetime -matdes 2 3 1

-se load -initfcn "model=nl spring(’’InitTimeProp’’,model);"

� OutputInit see sdtweb nl spring(’OutputInit’) handles preparation of output. nl spring(’OutputInitCall’)

is used for generation.

� OutputInitCheck see sdtweb nl spring(’OutputInitCheck’) handles finalization of output
data structure. This typically does low level verification needed for the optimization of inte-
gration.

� OutputFcn should be filled by OutputInit.

model=demosdt(’demogartfe’)

cf=feplot; % open FEPLOT and define a pointer CF to the figure

cf.model=model;

Assembling strategy xxx

build NL sdtweb nl spring(’AssembleInit’): scans all the non linear properties, disable the linear
celas elements associated to non linear property, build the needed matdes.

sdtweb nl spring(’AssembleExit’): build the model.NL field (through a call to nl spring

NL).

Additional fields used for non-linear time integration

197

p contact,nl contact

� model.FNL (low level vector used to pass data between functions)

model.FNLDOF, mo1.FNLlab should be moved to output generation . Current FNLDOF is
included in out.DOF.

sdtweb t nlspring(’of time’) tests move to separate out.FNL which should become the
reference.

Generated by nl fun(’init’) called by nl spring(’nl -storefnl’). xxx -storefnl should
be done by non-linearity.

� model.NL stack of non linearities can be extended through nl fun(’init’) calls.

�

Example

The following example creates a contact linearity between two cubes, computes a static solution and
performs some contact field visualizations
First with an integrated call using ctc utils

model=d_contact(’Cubes -offset0’); % Load model

model=ctc_utils(’GenerateContactPair’,model,...

struct(’ProId’,201,’name’,’contactPro’,...

’master’,’Group2 & SelFace & InNode{z==1}’,...
’slave’,’Group1 & SelFace & InNode{z==1}’,...
’contact’,’linear’,’Fu’,’Kc=1e11’,...

’friction’,0));

% compute a static solution

q0=nl_solve(’static tol1e-9’,model);

% perform some displays

cf=feplot(model,q0);

% show pressure field

ctc_utils(’showPn-reset’,cf.mdl,q0);

% show gap field in mm

ctc_utils(’showG-unit"MM"inMesh’,cf.mdl,q0);

% show pressure field in the mesh containing the top cube

ctc_utils(’showPn inMeshEltSel"withnode{z>1.001}"’,cf.mdl,q0)

Then with lower level calls

model=d_contact(’cubes -offset0’); % Load model

% Generate slave surface (ID 301)

198

p contact,nl contact

model=feutil(’AddSetFaceId -ID301’,model,’slave’,’Group1 & SelFace & InNode{z==1}’);
% Generate contact elements (master), ProId 201

model=ctc_utils(’build proid201’,model,’Group2 & SelFace & InNode{z==1}’);
% set pro, default

model=stack_set(model,’pro’,’contact’,...

p_contact(’dbval 201 tan1dx slaveid 301 -struct’));

% compute a static solution

q0=nl_solve(’static tol1e-9’,model);

Example : Impact between two cubes

A usual example is the simulation of an impact between two solids. The behavior of such model is
studied to gauge the integration scheme precision. The modified non linear Newmark scheme set
here tackles down the problems commonly encountered with the basic Newmark scheme regarding
the precision of the solution.

model=d_contact(’cubes -cBuild’);

% define the intial condition, with NL DOFs

[model,Case]=fe_case(nl_spring(’AssembleCall’),model);

[i1,r1]=feutil(’findnode group2’,model);

q0=struct(’DOF’,Case.mDOF,’def’,[zeros(size(Case.mDOF)) zeros(size(Case.mDOF))]);

q0.def(fe_c(Case.mDOF,[i1+.03],’ind’),2)=-.1;

model=stack_set(model,’curve’,’q0’,q0);

% Modify the TimeOpt Newmark parameters

Opt=nl_solve(’timeoptnlnewmark’);

Opt.Opt=[.25 .5 0 2e-3 1e2];

Opt.RelTol=-1e-4;

model=stack_set(model,’info’,’TimeOpt’,Opt);

% launch simulation and post treat contact data

def=fe_simul(’time’,model,model.Stack{end,3});
feplot(model,def); fecom colordataa

figure(4);

subplot(211);plot(def.data,fe_c(def.DOF,[70.03])*def.def);

xlabel(’Time [s]’); ylabel(’Node 65 disp.’)

subplot(212);plot(def.data,fe_c(def.FNL.DOF,[.5])*def.FNL.def);

xlabel(’Time [s]’); ylabel(’fn at contact points [Pa]’)

199

p contact,nl contact

See also
nl solve nllist nl spring fe timectc utils, d contact

200

Bibliography

rice_1983 [1] J. R. Rice and A. L. Ruina, “Stability of Steady Frictional Slipping,” Journal of Applied Me-
chanics, vol. 50, pp. 343–349, June 1983.

salencon83 [2] J. Salençon, Viscoélasticité. Presse des Ponts et Chaussés, Paris, 1983.

doghri00 [3] I. Doghri, Mechanics of Deformable Solids. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000.

simo00 [4] J. C. Simo and T. J. R. Hughes, Computational Inelasticity. No. 7 in Interdisciplinary Applied
Mathematics Mechanics and Materials, New York, NY: Springer, 2 ed., 2000.

simo84 [5] J. C. Simo and R. L. Taylor, “Consistent tangent operators for rate-independent elastoplastic-
ity,” Computer methods in applied mechanics and engineering, vol. 48, pp. 101–118, 1985.

schroder03 [6] J. Schröder and P. Neff, “Invariant formulation of hyperelastic transverse isotropy based on poly-
convex free energy functions,” International Journal of Solids and Structures, vol. 40, pp. 401–
445, Jan. 2003.

inria_2004 [7] INRIA and http://www.sdtools.com/pdf/sdt.pdfSDTools, OpenFEM, a Finite Element Tool-
box for Matlab and Scilab, http://www.openfem.netwww.openfem.net. INRIA, Rocquencourt,
SDTools, Paris, France, 2004.

R5.03.19 [8] M. Abbas, “Loi de comportement hyperélastique : matériau pres[...],” p. 8.

bal2 [9] Structural Dynamics Toolbox (for Use with MATLAB). Paris: SDTools, 1995/2020.

chapelle10 [10] D. Chapelle, J.-F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel, “A poroelastic model
valid in large strains with applications to perfusion in cardiac modeling,” Computational Me-
chanics, vol. 46, pp. 91–101, June 2010.

marckmann06 [11] G. Marckmann and E. Verron, “Comparison of hyperelastic models for rubber-like materials,”
Rubber Chemistry and Technology, vol. 79, no. 5, pp. 835–858, 2006.

201

p contact,nl contact

dal19 [12] H. Dal, Y. Badienia, K. Açikgöz, F. A. Denl̈ı, Y. Badienia, K. Açikgöz, and F. A. Denl̈ı, “A
comparative study on hyperelastic constitutive models on rubber: State of the art after 2006,”
in Constitutive Models for Rubber XI, June 2019.

carroll11 [13] M. M. Carroll, “A Strain Energy Function for Vulcanized Rubbers,” Journal of Elasticity,
vol. 103, pp. 173–187, Apr. 2011.

zienkiewicz_1989 [14] O. Zienkiewicz and R. Taylor, The Finite Element Method. MacGraw-Hill, 1989.

R3.06.08 [15] M. Abbas, “Finite elements treating the quasi-incompressibility,” Machine Translation, p. 21.

zhuravlev_2017 [16] R. Zhuravlev, Contributions to the study of the mechanical behavior of railway tracks. Compo-
nent with non-linear and dissipative behavior. PhD thesis, ENSAM, Dec. 2017.

penas21 [17] R. Penas, E. Balmes, and A. Gaudin, “A unified non-linear system model view of hyperelasticity,
viscoelasticity and hysteresis exhibited by rubber,” Mechanical Systems and Signal Processing,
vol. 170, p. 25, 2022.

these_penas [18] R. Penas, Models of Dissipative Bushings in Multibody Dynamics. PhD thesis, Ecole Nationale
Supérieure d’Arts et Métiers Paris, Nov. 2021.

vermot_2010 [19] G. Vermot Des Roches, Frequency and Time Simulation of Squeal Instabilities. Application to
the Design of Industrial Automotive Brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools,
2011.

jaumouille11 [20] V. Jaumouillé, Dynamique des structures à interfaces non linéaires : Extension des techniques
de balance harmonique. PhD thesis, Ecole Centrale de Lyon, Mar. 2011.

nlvibkit14 [21] A. Sénéchal, B. Petitjean, and L. Zoghaib, “Development of a numerical tool for industrial
structures with local nonlinearities,” in Proceedings of ISMA 2014 - International Conference
on Noise and Vibration Engineering and USD 2014 - International Conference on Uncertainty
in Structural Dynamics, pp. 3111–3126, 2014.

hammami_2014a [22] C. Hammami, Intégration de Modèles de Jonctions Dissipatives Dans La Conception Vibratoire
de Structures Amorties. PhD thesis, Arts et Metiers ParisTech, Paris, Oct. 14.

gre02 [23] J. A. Greenwood and J. B. P. Williamson, “Contact of nominally flat surfaces,” Proceedings of
the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, no. 1442,
pp. pp. 300–319, 1966.

moi1 [24] F. Moirot, Etude de la stabilité d’un équilibre en présence de frottement de Coulomb. PhD
thesis, Ecole Polytechnique, 1998.

lor1 [25] X. Lorang, Instabilité vibratoire des structures en contact frottant: Application au crissement
des freins de TGV. PhD thesis, Ecole Polytechnique, 2007.

202

p contact,nl contact

vol01 [26] D. Vola, M. Raous, and J. A. C. Martins, “Friction and instability of steady sliding: squeal of
a rubber/glass contact,” Int. J. Numer. Meth. Engng., vol. 46, pp. 1699–1720, 1999.

bau2 [27] T. Baumberger and C. Caroli, “Solid friction from stick-slip to pinning and aging,” Advances
in Physics, vol. 55, pp. 279–348, May 2006.

biw01 [28] S. Biwa, S. Hiraiwa, and E. Matsumoto, “Stiffness evaluation of contacting surfaces by bulk
and interface waves,” Ultrasonics, vol. 47, no. 1 4, pp. 123 – 129, 2007.

ver09 [29] G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to
the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools,
2010.

203

http://tel.archives-ouvertes.fr/tel-00594224_v1/

p contact,nl contact

204

	Theory and reference
	Non-linear system representation
	Strains, stresses, application of forces
	Jacobian computations

	Kinematics of non-linear systems
	Generalized non-linear springs
	Generalized non-linear surfaces
	Non-linear volumes
	Kinematic reduction, observation and hyperreduction
	Manual definition of input and output (deprecated)

	Non-linear constitutive laws
	Laws with no internal states, principles
	Tabular interpolation
	Laws with internal states
	Hyper-visco-hysteretic 0D model
	User callback in bluenl_inout, MexCb field
	Dedicated user function (deprecated)
	.anonymous field for definition (deprecated)
	Maxwell cell model using matrices (deprecated)

	Hyper-visco 3D model
	Kinematics
	Invariants, strain rates
	Stress, equations of motion, time integration at a material point
	Hyperelastic potential, polyconvexity
	Compression or volume change behavior
	Deviatoric laws
	Mixed U-P elements small deformation
	Cross check examples
	Mixed U-P elements large deformation
	Viscoelastic implementations

	Transient solution of non-linear equations
	Principles
	Enforced displacement, resultants
	Definition of an underlying linear system

	Data structures for non-linearities in time
	blueNLdata non-linearity definition (model declaration)
	Additional fields in model
	blueNL structure : non-linearity representation during time integration

	Harmonic balance solutions and solver
	Time/frequency representation of solutions/loads
	Harmonic balance equation (real DOF)
	Complex formulation and equivalent stiffness
	Inter-harmonic coupling discussion
	Harmonic load definition

	Data structures for HBM solvers
	Model, superelement
	Non-linearity definition blueNLdata
	NL structure non-linearity representation during HBM solve
	Solver options definition
	Option structure during HBM solve
	Harmonic result structure

	Tutorial
	Installation
	Frequency domain test cases
	Example lists
	Spring mass examples
	Beam problem with local non-linearity
	Lap joint problem with contact
	Hyperelastic bushing

	Time domain test cases
	Single mass test of various non-linearities
	Single mass stepped sine
	CBush with orientation
	Beam with non-linear rotation spring
	Lap joint with non-linear springs
	Parametric experiments in time

	Elastic representation as superelements
	NASTRAN cards used for sensors/non-linearities
	ABAQUS cards used for sensors/non-linearities
	ANSYS cards used for sensors/non-linearities
	Storing advanced SDT options in bulk format

	Squeal related examples
	Post-processing test signals
	CEA
	NL time transient on reduced bases

	Advanced usage
	DOE & general organization in steps

	External links

	Contact modeling, theory and implementation
	Modeling contact friction interactions
	Ideal Signorini-Coulomb model
	Functional representation of contact pressure
	Regularized friction models

	Numerical implementation
	Contact friction between 3D surfaces
	Eulerian sliding formulation
	Frequency domain linearization
	Surface Contact with large displacement
	Line contact for large displacement

	Implemented contact and friction laws (SDT contact)

	Function reference
	 d_hbm
	 d_tdoe
	 hbmui
	 hbm_post
	 hbm_solve
	 hbm_utils
	 nl_spring
	 mkl_utils
	 chandle
	 Non linearities list
	 nl_inout
	 Non linearities list (deprecated)
	 Creating a new non linearity: bluenl_fun.m
	 nl_solve
	 nl_mesh
	 spfmex_utils
	 nl_bset
	 ctc_utils
	 p_contact,nl_contact

	Bibliography
	Index

